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1 1-Categories and Functors
Definition 1.1 A 1-category 𝒞 consists of the followings:

• a class of objects 𝑋,𝑌 ,⋯, for which we write 𝑋 ∈ 𝒞 if 𝑋 is an object in 𝒞;
• for each 𝑋,𝑌 ∈ 𝒞 a class Hom𝒞(𝑋, 𝑌 ) of morphisms, in which an element 𝑓 ∈ Hom𝒞(𝑋, 𝑌 ) is

also denoted by 𝑓 ∶ 𝑋 → 𝑌 , or
𝑋 𝑌𝑓 ;

• for each 𝑋 ∈ 𝒞 an element id𝑋 ∈ Hom𝒞(𝑋,𝑋);
• for each 𝑋,𝑌 , 𝑍 ∈ 𝒞, a function, namely composition, ∘ ∶ Hom𝒞(𝑋, 𝑌 ) × Hom𝒞(𝑌 , 𝑍) →

Hom𝒞(𝑋,𝑍) such that
– (ℎ ∘ 𝑔) ∘ 𝑓 = ℎ ∘ (𝑔 ∘ 𝑓) for any 𝑓 ∶ 𝑋 → 𝑌 , 𝑔 ∶ 𝑌 → 𝑍, and ℎ ∶ 𝑍 → 𝑊 , and
– id𝑌 ∘𝑓 = 𝑓 = 𝑓 ∘ id𝑋 for any 𝑓 ∶ 𝑋 → 𝑌 , i.e., the following diagrams commute:

𝑋 𝑌

𝑌

𝑓

𝑓
id𝑌

𝑋 𝑌

𝑋

𝑓

id𝑋 𝑓

Example 1.1 There are many examples of categories:
1. The category 𝖲𝖾𝗍, whose objects are sets and morphisms are maps.
2. The category 𝖦𝗋𝗉, whose objects are groups and morphisms are group homomorphisms.
3. The category 𝖳𝗈𝗉, whose objects are topological spaces and morphisms are continuous maps.
The above categories are very large, in the sense that their objects form a proper class. If the class

of objects in a category is a set, then we call the category a small category.
Example 1.2 There are also examples of small categories.

1. A set 𝑆 can be viewed as a category, with its elements as objects, and the morphisms are given
by

Hom𝑆(𝑥, 𝑦) = {{id𝑥}, 𝑥 = 𝑦,
∅, 𝑥 ≠ 𝑦.

2. Suppose 𝐺 is a group. We can define a category 𝖡𝐺 with a single element ∗ as its only object,
and the elements of 𝐺 as its morphisms. The composition of two morphism 𝑔, ℎ ∶ ∗ → ∗ is given
by

𝑔 ∘ ℎ ∶= 𝑔ℎ ∶ ∗ → ∗,
where 𝑔ℎ is the product of 𝑔 and ℎ in the group 𝐺. The identity morphism id∗ is exactly the
identity element 𝑒 of 𝐺.
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3. Suppose (𝑃 ,≤) be a poset. Then 𝑃 can also be viewed as a category whose objects are its
elements, and morphisms are given by

Hom𝑃 (𝑥, 𝑦) = {{(𝑥, 𝑦)}, 𝑥 ≤ 𝑦,
∅, otherwise.

The composition of morphisms are well-defined from the transitivity of ≤.
4. Suppose 𝐺 = (𝑉 ,𝐸) is a directed graph. We define the path category of 𝐺, with vertices as objects

and paths from 𝑣 to 𝑣′ as morphisms from 𝑣 to 𝑣′. The composition are just the connection of
paths.

Definition 1.2 A morphism 𝑓 ∶ 𝑋 → 𝑌 in a category 𝒞 is called an isomorphism if there is a
morphism 𝑔 ∶ 𝑌 → 𝑋 such that 𝑔 ∘ 𝑓 = id𝑋 and 𝑓 ∘ 𝑔 = id𝑌 . An isomorphism from an object 𝑋 ∈ 𝒞 to
itself is called an automorphism.
Example 1.3 A group homomorphism is an isomorphism in 𝖦𝗋𝗉 if and only if it is a group isomor-
phism, and a continuous map is an isomorphism in 𝖳𝗈𝗉 if and only if it is a homeomorphism.

Note that he set of all automorphisms of an object 𝑋 in 𝒞, denoted by Aut𝒞(𝑋), is actually a group
under composition.
Example 1.4 1. In 𝖲𝖾𝗍, the automophism group of the set {1,⋯ , 𝑛} is isomorphic to 𝑆𝑛, the

symmetric group of 𝑛 elements.
2. By the definition of 𝖡𝐺, we can easily see that

Aut𝖡𝐺(∗) ≅ 𝐺.

Example 1.5 Suppose 𝑋 is a topological space. We define the fundamental groupoid Π1(𝑋) to be
a category whose objects are points in 𝑋, and morphisms from 𝑥0 to 𝑥1 are homotopic classes of paths
from 𝑥0 to 𝑥1. It can be seen that

AutΠ1(𝑋)(𝑥) = 𝜋1(𝑋, 𝑥), 𝑥 ∈ 𝑋.

The fundamental groupoids can be used to give a proof of Seifert-van Kampen theorem.
Definition 1.3 A morphism 𝑓 ∶ 𝑋 → 𝑌 in a category 𝒞 is called a monomorphism if for each 𝑈 ∈ 𝒞,
the map

(𝑓 ∘ −) ∶ Hom𝒞(𝑈,𝑋) → Hom𝒞(𝑈, 𝑌 )
is a monomorphism of sets. A morphism 𝑓 ∶ 𝑋 → 𝑌 in a category 𝒞 is called a epimorphism if for
each 𝑈 ∈ 𝒞, the map

(− ∘ 𝑓) ∶ Hom𝒞(𝑌 , 𝑈) → Hom𝒞(𝑋,𝑈)
is a monomorphism of sets.
Definition 1.4 Suppose 𝒞 is a category. We define the dual category 𝒞op of 𝒞 to be the category
whose objects are just the objects of 𝒞, and the morphisms are given by

Hom𝒞op(𝑋, 𝑌 ) = Hom𝒞(𝑌 ,𝑋)

for each 𝑋,𝑌 ∈ 𝒞.
It is not hard to see that a morphism 𝑓 ∶ 𝑋 → 𝑌 is a monomorphism in 𝒞 if and only if the

corresponding 𝑓op ∶ 𝑌 → 𝑋 is an epimorphism in in 𝒞op.
For a group 𝐺, we can always define another group 𝐺op with the same elements as 𝐺, and the

multiplication on 𝐺op is given by (𝑔, ℎ) ↦ ℎ𝑔 for each 𝑔, ℎ ∈ 𝐺, where the right hand side is the product
in 𝐺. Clearly we have

𝖡(𝐺op) = 𝖡𝐺op.
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Definition 1.5 A functor 𝐹 ∶ 𝒞 → 𝒟 between two categories 𝒞 and 𝒟 assigns to each object 𝑋 ∈ 𝒞
an object 𝐹(𝑥) ∈ 𝒟, and to each morphism 𝑓 ∶ 𝑋 → 𝑌 in 𝒞 a morphism 𝐹(𝑓) ∶ 𝐹 (𝑋) → 𝐹(𝑌 ) in 𝒟,
such that

• 𝐹(id𝑋) = id𝐹(𝑋) for each 𝑋 ∈ 𝒞, and
• 𝐹(𝑔 ∘ 𝑓) = 𝐹(𝑔) ∘ 𝐹(𝑓) for each 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍.
There are many things can be identified with functors between categories.

Example 1.6 1. Let 𝟣 ∶= {∗} be the category with a single object and a single morphism, which
is the identity morphism. A functor 𝟣 → 𝒞 is then identified with an object in 𝒞.

2. Let {0 → 1} be the category defined from the poset {0 ≤ 1}. A functor {0 → 1} → 𝒞 is then
identified with a morphism in 𝒞.

3. Suppose 𝐺 is a group. A functor 𝖡𝐺 to a category 𝒞 is a kind of action of 𝐺 on an object in 𝒞.
In particalr, a functor 𝖡𝐺 → 𝖲𝖾𝗍 is identified with a group action of 𝐺 on a set, and a functor
𝖡𝐺 → 𝖵𝖾𝖼𝗍𝐹 is identified with a group representation of 𝐺 over a field 𝐹 .

Example 1.7 We can define two different power set functors 𝑃 ∶ 𝖲𝖾𝗍 → 𝖲𝖾𝗍 and 𝑃 ′ ∶ 𝖲𝖾𝗍op → 𝖲𝖾𝗍.
Both functors assigns to each set 𝑋 the power set 𝑃(𝑋). However, 𝑃 assigns to each map 𝑓 ∶ 𝑋 → 𝑌
the map 𝑃(𝑓) ∶ 𝑃 (𝑋) → 𝑃(𝑌 ) that sends 𝐴 ⊂ 𝑋 to its image 𝑓(𝐴) under 𝑓 , while 𝑃 ′ assigns to each
map 𝑓 ∶ 𝑋 → 𝑌 the map 𝑃 ′(𝑓) ∶ 𝑃 (𝑌 ) → 𝑃(𝑋) that sends 𝐵 ⊂ 𝑌 to its preimage 𝑓−1(𝐵) under 𝑓 .

If we consider the functor Hom𝖲𝖾𝗍(−, {0, 1}) ∶ 𝖲𝖾𝗍op → 𝖲𝖾𝗍, then it does the same thing as 𝑃 ′. Such
a functor 𝒞op → 𝖲𝖾𝗍 that can be expressed as Hom𝒞(−,𝑋) for some 𝑋 ∈ 𝒞 is called a representable
functor.
Example 1.8 Consider the category 𝖳𝗈𝗉. We can define the open set functor 𝖮𝗉𝖾𝗇 ∶ 𝖳𝗈𝗉op → 𝖲𝖾𝗍
that assigns to each topological space 𝑋 the set of open subsets of 𝑋, and to each continuous map
𝑓 ∶ 𝑋 → 𝑌 the map 𝖮𝗉𝖾𝗇(𝑓) ∶ 𝖮𝗉𝖾𝗇(𝑌 ) → 𝖮𝗉𝖾𝗇(𝑋) that sends an open subset 𝑈 ⊂ 𝑌 to its preimage
𝑓−1(𝑈) ⊂ 𝑋. It can be shown that 𝖮𝗉𝖾𝗇 is also a representable functor. Consider the topology on {0, 1}
given by {∅, {1}, {0, 1}}. Then 𝖮𝗉𝖾𝗇 can be identified with the functor Hom𝖳𝗈𝗉(−, {0, 1}) ∶ 𝖳𝗈𝗉op → 𝖲𝖾𝗍
in a natural way.

There are many functors in the category theory that are called forgetful functors. We can consider
the following sequence of forgetful functors:

ℚ𝖠𝗅𝗀 𝖱𝗇𝗀 𝖠𝖻 𝖦𝗋𝗉 𝖲𝖾𝗍 𝟣 .

However, the extent of forgetfulness of functors are not always the same.
Definition 1.6 Suppose 𝐹 ∶ 𝒞 → 𝒟 is a functor. We say 𝐹 is faithful if for each 𝑋,𝑌 ∈ 𝒞, the map

𝐹 ∶ Hom𝒞(𝑋, 𝑌 ) → Hom𝒟(𝐹(𝑋), 𝐹(𝑌 ))

is injective. We say 𝐹 is full if for each 𝑋,𝑌 ∈ 𝒞, the map

𝐹 ∶ Hom𝒞(𝑋, 𝑌 ) → Hom𝒟(𝐹(𝑋), 𝐹(𝑌 ))

is surjective. We say 𝐹 is fully faithful if it is both faithful and full.
In the sequence of forgetful functors above, the functors ℚ𝖠𝗅𝗀 → 𝖱𝗇𝗀 and 𝖠𝖻 → 𝖦𝗋𝗉 are both fully

faithful, so they only forget some properties of objects; the functors 𝖱𝗇𝗀 → 𝖠𝖻 and 𝖦𝗋𝗉 → 𝖲𝖾𝗍 are
faithful but not full, so they forget some structure of objects; the functor 𝖲𝖾𝗍 → 𝟣 is neither full nor
faithful, and it just forgets everything.
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Definition 1.7 Suppose 𝐹,𝐺 ∶ 𝒞 → 𝒟 are two functors. A natural transformation 𝛼 ∶ 𝐹 → 𝐺,
expressed in a diagram as follows:

𝒞 𝒟
𝐺

𝐹
𝛼

assigns to each object 𝑋 ∈ 𝒞 a morphism 𝛼𝑋 ∶ 𝐹 (𝑋) → 𝐺(𝑋) in 𝒟, such that for each morphism
𝑓 ∶ 𝑋 → 𝑌 in 𝒞, the following diagram commutes:

𝐹(𝑋) 𝐺(𝑋)

𝐹(𝑌 ) 𝐺(𝑌 )

𝛼𝑋

𝐹(𝑓) 𝐺(𝑓)

𝛼𝑌

If 𝛼𝑋 is an isomorphism for each 𝑋 ∈ 𝒞, then we say 𝛼 is a natural isomorphism and write 𝐹 𝛼≅ 𝐺.
Inspired by the definition of homotopy in topology, we can view a natural transformation as a kind

of homotopy between functors. Precisely, a natural transformation 𝛼 ∶ 𝐹 → 𝐺, where 𝐹,𝐺 are functors
from 𝒞 to 𝒟, is equivalent to a functor ℎ ∶ 𝒞 × {0 → 1} → 𝒟 such that ℎ|𝒞×0 = 𝐹 and ℎ|𝒞×1 = 𝐺.

Note that for two categories 𝒞 and 𝒟, the functors between them form a category 𝖥𝖼𝗍(𝒞,𝒟), where
the morphisms are given by natural transformations between them.
Example 1.9 Suppose 𝐺 is a group. We have seen that each functor 𝖡𝐺 → 𝖵𝖾𝖼𝗍𝐹 is identified with
a group representation of 𝐺 over a field 𝐹 . Suppose 𝜌1, 𝜌2 ∶ 𝖡𝐺 → 𝖵𝖾𝖼𝗍𝐹 are two representations of 𝐺.
A natural transformation 𝜑 ∶ 𝜌1 → 𝜌2 then makes the following diagram commute for each 𝑔 ∈ 𝐺:

𝜌1(∗) 𝜌2(∗)

𝜌1(∗) 𝜌2(∗)

𝜑∗

𝜌1(𝑔) 𝜌2(𝑔)

𝜑∗

which is exactly the definition of a morphism between representations of 𝐺 over 𝐹 . This shows that
𝖥𝖼𝗍(𝖡𝐺,𝖵𝖾𝖼𝗍𝐹 ) can be identified with the category 𝐺𝖱𝖾𝗉 of representations of 𝐺 over 𝐹 , or equivalently,
the category 𝐹[𝐺]𝖬𝗈𝖽 of modules over the group ring 𝐹[𝐺].
Definition 1.8 Suppose 𝒞,𝒟 are categories and 𝐹 ∶ 𝒞 → 𝒟, 𝐺 ∶ 𝒟 → 𝒞 are functors. If 𝐺 ∘ 𝐹 ≅ id𝒞
and 𝐹 ∘𝐺 ≅ id𝒟, then we say that 𝐹 is a equivalence of categories and that 𝒞 and 𝒟 are equivalent,
denoted by 𝒞 ≃ 𝒟.
Example 1.10 Suppose 𝒞 is the category that consists of three objects and a pair of isomorphisms
between each pair of objects. Then it is not hard to see that 𝒞 is equivalent to 𝟣.
Example 1.11 We may guess that a category 𝒞 whose morphisms are all isomorphisms is equivalent
to 𝟣. However, this is not true. In fact, by the axiom of choice, we can show that

𝒞 ≃ 𝖡Aut𝒞(𝑋)

if there is an object 𝑋 ∈ 𝒞 such that Hom𝒞(𝑋, 𝑌 ) ≠ ∅ for each 𝑌 ∈ 𝒞.
To see this, take an isomorphism 𝑓𝑌 ∶ 𝑋 → 𝑌 for each 𝑌 ∈ 𝒞. Then we can define a functor

𝐹 ∶ 𝒞 → 𝖡Aut𝒞(𝑋) that assigns to each object 𝑌 in 𝒞 the only object ∗ ∈ 𝖡Aut𝒞(𝑋), and to each
morphism 𝑔 ∶ 𝑌 → 𝑍 the automorphism 𝑓−1

𝑍 ∘ 𝑔 ∘ 𝑓𝑌 . If we define 𝐺 ∶ 𝖡Aut𝒞(𝑋) → 𝒞 in the natural
way so that it sends ∗ to 𝑋 and each automorphism ℎ ∶ ∗ → ∗ to ℎ ∈ Aut𝒞(𝑋), then we can see that
𝐹 ∘ 𝐺 ≅ id𝖡Aut𝒞(𝑋) and 𝐺 ∘ 𝐹 ≅ id𝒞, implying that 𝒞 ≃ 𝖡Aut𝒞(𝑋).

In this case, 𝒞 ≅ 𝟣 if and only if Aut𝒞(𝑋) is trivial.
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2 Universal Constructions and Yoneda Embedding
Definition 2.1 Let 𝒞 be a category. If there is an object 𝟙 ∈ 𝒞 such that for each object 𝑋 in 𝒞, the
set Hom𝒞(𝑋, 𝟙) has exactly 1 element, then we call 𝟙 an final object in 𝒞. If there is an object 𝟘 ∈ 𝒞
scuh that for each object 𝑋 in 𝒞, the set Hom𝒞(𝟘,𝑋) has exactly 1 element, then we call 𝟘 an initial
object in 𝒞.

It can be seen that if a final or an initial object exists, then it is unique up to isomorphism.
Example 2.1 1. For the category 𝖳𝗈𝗉 of topological spaces, the final object is the topological space

{∗} of a single point, and the initial object is the empty set ∅.
2. For the category 𝖲𝖾𝗍 of sets, the final object and the initial object are both the trivial group {𝑒}.
3. Consider the category given by a poset (𝑃 ,≤). Its final element is the maximum max𝑃 of 𝑃 if it

exists, and its initial element is the minimum min𝑃 of 𝑃 if it exists.
Before introducing the concept of limits and colimits, we conduct a principle that an object can

always be described by how it interacts with other objects, i.e., the morphisms to it or from it are all
we are concern with an object.
Definition 2.2 Consider a graph 𝐹 ∶ 𝐼 → 𝒞, i.e., a functor from an index category to a category 𝒞.
A cone on 𝐹 consists of a vertex 𝑐 ∈ 𝒞, and for ecah 𝑖 ∈ 𝐼 a morphism 𝑓(𝑖) ∶ 𝑐 → 𝐹(𝑖) such that for
each morphism 𝜑 ∶ 𝑖 → 𝑗 in 𝐼 , the following diagram commutes:

𝐹(𝑖)

𝑐

𝐹(𝑗)

𝐹(𝜑)

𝑓(𝑖)

𝑓(𝑗)

When the morphisms from the vertex 𝑐 is clear, we may just represent the cone by its vertex 𝑐.
Equivalently, we can define a cone on 𝐹 to be a natural transformation from the constant functor
𝑐 to 𝐹 , where 𝑐(𝑖) = 𝑐 for all 𝑖 ∈ 𝐼 and 𝑐(𝜑) = id𝑐 for all 𝜑 ∶ 𝑖 → 𝑗 in 𝐼 . Denote the category of cones
on 𝐹 by 𝖢𝗈𝗇𝖾(𝐹), where a morphism 𝛼 ∶ 𝑐 → 𝑐′ is a natural transformation 𝛼 such that the following
diagram commutes:

𝑐 𝑐′

𝐹

𝛼

The limit of 𝐹 is defined to be the final object in 𝖢𝗈𝗇𝖾(𝐹) if it exists, and is denoted by lim𝐹 .
Dually, we can define a cocone on 𝐹 ∶ 𝐼 → 𝒞 to be a natural transformation from 𝐹 to the constant

𝑐. The category of concones on 𝐹 , denoted by 𝖢𝗈𝖢𝗈𝗇𝖾(𝐹), is defined in a similar way. The colimit of
𝐹 is then defined to be the initial object in 𝖢𝗈𝖢𝗈𝗇𝖾(𝐹) if it exists, and is denoted by colim𝐹 .

In the spirit of the principle we conducted, we can actually defined the limit and the colimit by the
following isomorphism of sets that is natural in 𝑋 ∈ 𝒞:

Hom𝒞(colim𝐹,𝑋) ≅ Hom𝖥𝖼𝗍(𝐼,𝒞)(𝐹 ,𝑋), Hom𝒞(𝑋, lim𝐹) ≅ Hom𝖥𝖼𝗍(𝐼,𝒞)(𝑋, 𝐹),

where 𝑋 represents the constant functor to 𝑋 ∈ 𝒞.
Example 2.2 The product and coproduct of objects in a category 𝒞 can be defined to be the limit and
the colimit of a graph with the index category to be the discrete category given by a set 𝐼 , respectively.
Specifically, consider an index set 𝐼 , which can also be viewed as a discrete category. Then a functor
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𝐹 ∶ 𝐼 → 𝒞 is always identified with a family {𝑋𝑖}𝑖∈𝐼 of objects in 𝒞. The product of the family {𝑋𝑖}𝑖∈𝐼
is defined to be the limit lim𝐹 of 𝐹 , while the coproduct of the family {𝑋𝑖}𝑖∈𝐼 is defined to be the
colimit colim𝐹 . We denote the product and the coproduct, respectively, by

∏
𝑖∈𝐼

𝑋𝑖 and ∐
𝑖∈𝐼

𝑋𝑖.

The product and coproduct of two objects 𝑋 and 𝑌 can be expressed by the following diagrams:

𝑍

𝑋 𝑋 × 𝑌 𝑌
∃!

𝑋 𝑋 ⊔ 𝑌 𝑌

𝑍
∃!

1. For 𝖦𝗋𝗉, the product is the direct product of groups and the coproduct is the free product of
groups.

2. For 𝖠𝖻, the product is the direct product as well, while the coproduct is the direcu sum of abelian
groups.

3. For 𝖱𝗇𝗀, the product is still the direct product, and the product is the tensor product (over ℤ).
Example 2.3 We can define the sequential (co)limit for a sequence of objects in a category. To
define the sequential limit, we take the index category to be the poset (ℤ≤0, ≤), and then a functor
𝐹 ∶ {⋯ → −2 → −1 → 0} → 𝒞 is identified with the following sequence:

⋯ 𝐹(−2) 𝐹(−1) 𝐹(0)

The colimit colim𝐹 of such sequence is clearly just 𝐹(0), and the limit lim𝐹 is called the limit of the
sequence.

1. Consider the following sequence in 𝖱𝗇𝗀, where the morphisms are given by quotient map:

⋯ ℤ/𝑝3 ℤ/𝑝2 ℤ/𝑝

The limit of this sequence is called the ring of 𝑝-adic integers, denoted by ℤ𝑝.
2. Consider another sequence in 𝖱𝗇𝗀 given below, where 𝑘[𝑥] is the polynomial ring over a field 𝑘:

⋯ 𝑘[𝑥]/(𝑥3) 𝑘[𝑥]/(𝑥2) 𝑘[𝑥]/(𝑥)

The limit of the sequence is the formal power series ring 𝑘[[𝑥]] over 𝑘.
For the sequential colimit, we take the poset (ℤ≥0, ≤) as the index category, and then a functor 𝐹 ∶
{0 → 1 → 2 → ⋯} → 𝒞 is identified with a sequence of the following form:

𝐹(0) 𝐹(1) 𝐹(2) ⋯

It can be seen the limit lim𝐹 is just 𝐹(0). The colimit of the sequence is defined to be the colimit
colim𝐹 .

1. The sequence in 𝖠𝖻,
ℤ 1

𝑝ℤ 1
𝑝2ℤ ⋯

where each morphism is the canonical embedding, has the colimit

colim = ℤ[1𝑝] = { 𝑛
𝑝𝑟 ∣ 𝑛 ∈ ℤ, 𝑟 ∈ ℤ≥0} ⊂ ℚ.
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2. Consider the following sequence in 𝖳𝗈𝗉, where each morphism embeds 𝑆𝑛 to the equator of 𝑆𝑛+1:

𝑆1 𝑆2 𝑆3 ⋯
The colimit of the this sequence is called the infinite sphere 𝑆∞, which is also the unit sphere in
ℝ∞ = ⊕∞

𝑖=1ℝ.
Example 2.4 For a diagram of the following form:

𝑋 𝑌 𝑍
we usaully call its limit 𝑊 a pullback or a fiber product, and demonstrate it by the following diagram
called a pullback diagram:

𝑊 𝑍

𝑋 𝑌
Dually, for a diagram of the follwing form:

𝐵 𝐴 𝐶
its colimit 𝐷 is often called a pushout or a fiber coproduct, and is showed by the following diagram
called a pushout diagram:

𝐴 𝐶

𝐵 𝐷
1. In 𝖲𝖾𝗍, the pullback of 𝑋 and 𝑍 to 𝑌 is given by

𝑊 = {(𝑥, 𝑧) ∈ 𝑋 × 𝑍 ∣ 𝑓(𝑥) = 𝑔(𝑧)},
and the pushout of 𝐵 and 𝐶 from 𝐴 is given by

𝐷 = (𝐵 ⊔ 𝐶)/ ∼, 𝑓(𝑎) ∼ 𝑔(𝑎), 𝑎 ∈ 𝐴.

2. Consider a continuous map 𝑓 ∶ 𝑋 → 𝑌 and a vector bundle 𝑝 ∶ 𝐸 → 𝑌 in 𝖳𝗈𝗉. We can define the
pullback bundle 𝑝′ ∶ 𝑓∗𝐸 → 𝑋 of 𝐸 by the pullback diagram:

𝑓∗𝐸 𝐸

𝑋 𝑌
𝑝′ 𝑝

𝑓

3. Suppose 𝑋 is a topological space in 𝖳𝗈𝗉. We have the embedding 𝑋 → C𝑋, where C𝑋 is the
cone on 𝑋. Together with the suspension S𝑋 of 𝑋, we have the pushout diagram:

𝑋 C𝑋

C𝑋 S𝑋

Example 2.5 Consider the functor 𝐹 ∶ 𝖡𝐺 → 𝖲𝖾𝗍 which is usually identified with a group action of
𝐺 on a set 𝐹(∗). We can see that the limit of 𝐹 is

lim𝐹 = {𝑥 ∈ 𝐹(∗) ∣ 𝑔𝑥 = 𝑥, ∀𝑔 ∈ 𝐺},
and the colimit of 𝐹 is

colim𝐹 = {𝐺𝑥 ∣ 𝑥 ∈ 𝐹(∗)} = 𝐹(∗)/𝐺,
which is exactly the orbit space of the action.
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Recalling our principle of description of objects, we see that for an object 𝑋 ∈ 𝒞, the following
functors are of great significance:

Hom𝒞(−,𝑋) ∶ 𝒞op → 𝖲𝖾𝗍, and Hom𝒞(𝑋,−) ∶ 𝒞 → 𝖲𝖾𝗍.

Such point of view introduce us to a functor called Yoneda embedding 𝒞 → 𝖥𝖼𝗍(𝒞op, 𝖲𝖾𝗍) that assigns
to each object 𝑋 the functor Hom𝒞(−,𝑋) and to each morphism 𝑓 ∶ 𝑋 → 𝑌 the natural transformation
Hom𝒞(−,𝑋) → Hom𝒞(−, 𝑌 ) given by the following diagram:

Hom𝒞(𝑍,𝑋) Hom𝒞(𝑍, 𝑌 )

(ℎ ∘ 𝑔 ∶ 𝑍 → 𝑋) (𝑓 ∘ ℎ ∘ 𝑔 ∶ 𝑍 → 𝑌 )

(ℎ ∶ 𝑊 → 𝑋) (𝑓 ∘ ℎ ∶ 𝑊 → 𝑌 )

Hom𝒞(𝑊,𝑋) Hom𝒞(𝑊, 𝑌 )

Yoneda embedding maps 𝒞 into a somehow larger category 𝖥𝖼𝗍(𝒞op, 𝖲𝖾𝗍). To see that it is reasonable
to call this an embedding, we need Yoneda Lemma:
Theorem 2.1 (Yoneda Lemma) There is a bĳection

𝐹(𝑋) ≅ Hom𝖥𝖼𝗍(𝒞op,𝖲𝖾𝗍)(Hom𝒞(−,𝑋), 𝐹)

that is natural in both 𝑋 ∈ 𝒞 and 𝐹 ∈ 𝖥𝖼𝗍(𝒞op, 𝖲𝖾𝗍).
Proof. The natural bĳection is given as followings:

𝐹(𝑋) → Hom𝖥𝖼𝗍(𝒞op,𝖲𝖾𝗍)(Hom𝒞(−,𝑋), 𝐹),
𝑥 ↦ (𝑥 ∶ Hom𝒞(−,𝑋) → 𝐹);

(𝛼(𝑋))(id𝑋) ↦ 𝛼,

where the natural transformation 𝑥 is defined by

𝑥(𝑌 ) ∶ Hom𝒞(𝑌 ,𝑋) → 𝐹(𝑌 ), 𝑓 ↦ (𝐹(𝑓))(𝑥).

Corollary 2.2 Yoneda embedding is a fully faithful functor, i.e., the induced map of sets

Hom𝒞(𝑋, 𝑌 ) → Hom𝖥𝖼𝗍(𝒞op,𝖲𝖾𝗍)(Hom𝒞(−,𝑋),Hom𝒞(−, 𝑌 ))

is bĳective for each objects 𝑋,𝑌 ∈ 𝒞.
There is not always a limit or colimit of a functor 𝐹 ∶ 𝐼 → 𝒞 for a general category 𝒞. However, it

can be shown that limits and colimits in 𝒞 always exists, and so as those in 𝖥𝖼𝗍(𝒞op, 𝖲𝖾𝗍) and 𝖥𝖼𝗍(𝒞, 𝖲𝖾𝗍).
We can also show that for a functor 𝐹 ∶ 𝐼 → 𝒞 such that lim𝑖 𝐹(𝑖) = lim𝐹 and colim𝑖 𝐹(𝑖) = colim𝐹
both exist, it is true that

Hom𝒞(−, lim
𝑖

𝐹(𝑖)) ≅ lim
𝑖

Hom𝒞(−, 𝐹(𝑖)) and Hom𝒞(colim𝑖 𝐹(𝑖),−) ≅ lim
𝑖

Hom𝒞(𝐹(𝑖),−)

in a natural way. Thus Yoneda embedding is a kind of completion of 𝒞.
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Definition 2.3 Suppose 𝐹 ∶ 𝒞 → 𝒟 and 𝐺 ∶ 𝒟 → 𝒞 are functors between categories 𝒞 and 𝒟. If there
is a natural isomorphism Hom𝒟(𝐹(𝑋), 𝑌 ) ≅ Hom𝒞(𝑋,𝐺(𝑌 )) for all 𝑋 ∈ 𝒞 and 𝑌 ∈ 𝒟, then we say
that 𝐹 is a left adjoint of 𝐺 and 𝐺 is a right adjoint of 𝐹 .
Theorem 2.3 Suppose 𝐹 ∶ 𝒞 → 𝒟 is a left adjoint of 𝐺 ∶ 𝒟 → 𝒞 and 𝐺 is a right adjoint of 𝐹 . Then
for a graph 𝑋 ∶ 𝐼 → 𝒞 we have

𝐹(colim
𝑖

𝑋(𝑖)) ≅ colim
𝑖

𝐹(𝑋(𝑖))

if colim𝑖 𝑋(𝑖) exists, and for a graph 𝑌 ∶ 𝐼 → 𝒟 we have

𝐺(lim
𝑖

𝑌 (𝑖)) ≅ lim
𝑖

𝐺(𝑌 (𝑖))

if lim𝑖 𝑌 (𝑖) exists.
Proof. It suffices to show that

Hom𝒟(𝐹(colim
𝑖

𝑋(𝑖)), 𝑍) ≅ Hom𝒟(colim
𝑖

𝐹(𝑋(𝑖)), 𝑍)

naturally in 𝑍 ∈ 𝒟. This can be seen from the following sequence of natural isomorphisms:

Hom𝒟(𝐹(colim
𝑖

𝑋(𝑖)), 𝑍) ≅ Hom𝒞(colim𝑖 𝑋(𝑖),𝐺(𝑍))
≅ lim

𝑖
Hom𝒞(𝑋(𝑖),𝐺(𝑍))

≅ lim
𝑖

Hom𝒟(𝐹(𝑋(𝑖)), 𝑍)
≅ Hom𝒟(colim

𝑖
𝐹(𝑋(𝑖)), 𝑍).

The case is similar for 𝐺(lim𝑖 𝑌 (𝑖)) and lim𝑖 𝐺(𝑌 (𝑖)).

3 2-categories
For two categories 𝒞 and 𝒟, we see that 𝖥𝖼𝗍(𝒞,𝒟) is not only a set but also a category, with functors
being natural transformations. In such case, we barely consider if two functors 𝐹,𝐺 ∶ 𝒞 → 𝒟 are equal.
Instead, whether a natural transformation 𝛼 ∶ 𝐹 → 𝐺 is an isomorphism is what we are concerned with.
This induces the opinion that in a category with 𝑛-morphisms (although we have not defined, this can
be interpreted in an intuitive way), we are not supposed to discuss the equality of 𝑘-morphisms (𝑘 < 𝑛),
yet a (𝑘 + 1)-morphism is whether an equivalence is more worth considering.
Definition 3.1 A strict 2-category consists of the folowings:

• a class of objects 𝑋,𝑌 ,⋯;
• a class of 1-morphisms 𝑓 ∶ 𝑋 → 𝑌 and an identity 1-morphism id𝑋 for each object 𝑋, such that

the composition of 1-morphisms satisfies the associativity;
• a class of 2-morphisms 𝛼 ∶ 𝑓 → 𝑔 where 𝑓, 𝑔 ∶ 𝑋 → 𝑌 are 1-morphisms and an identity 2-morphism

id𝑓 for each 1-morphism 𝑓 , such that the composition of 2-morphisms satisfies the associativity.
In other words, we have a category Hom(𝑋, 𝑌 ) for each pair of objects (𝑋, 𝑌 ).

This is the direct generalization of the concept of 1-categories. It is worth noting that by this
definition, we need to talk about whether two objects in the category Hom(𝑋, 𝑌 ) are equal instead
of equivalent. This violates the opinion we have stated! So we need to modify our definition for
2-categories.
Definition 3.2 A (weak) 2-category 𝒞 consists of the followings:
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• a class of objects;
• for each objects 𝑋,𝑌 ∈ 𝒞, a category Hom𝒞(𝑋, 𝑌 ), whose objects are called 1-morphisms of 𝒞

and whose morphisms are called 2-morphisms of 𝒞;
• for each object 𝑋 ∈ 𝒞, a 1-morphism id𝑋 ∈ Hom𝒞(𝑋,𝑋).
• for each 𝑋,𝑌 , 𝑍 ∈ 𝒞, a functor

∘ ∶ Hom𝒞(𝑌 , 𝑍) ×Hom𝒞(𝑋, 𝑌 ) → Hom𝒞(𝑋,𝑍),

called the composition of morphisms;
• for each 𝑋,𝑌 ∈ 𝒞, two natural isomorphisms:

Hom𝒞(𝑋, 𝑌 ) Hom𝒞(𝑋, 𝑌 )

id𝑌 ∘−

id

𝜆𝑋,𝑌 Hom𝒞(𝑋, 𝑌 ) Hom𝒞(𝑋, 𝑌 )

−∘id𝑋

id

𝜌𝑋,𝑌

• for each 𝑋,𝑌 , 𝑍,𝑊 ∈ 𝒞, a natural isomorphism:

Hom𝒞(𝑋, 𝑌 ) ×Hom𝒞(𝑌 , 𝑍) ×Hom𝒞(𝑍,𝑊) Hom𝒞(𝑋, 𝑌 ) ×Hom𝒞(𝑌 ,𝑊)

Hom𝒞(𝑋,𝑍) ×Hom𝒞(𝑍,𝑊) Hom𝒞(𝑋,𝑊)

id×∘

∘×id ∘

∘

𝛼𝑋,𝑌 ,𝑍,𝑊

such that the following identities are satisfied:
• the pentagonal identity: for each objects 𝑋,𝑌 , 𝑍,𝑊, 𝑉 ∈ 𝒞, and morphisms

𝑉 𝑊 𝑋 𝑌 𝑍𝑘 ℎ 𝑔 𝑓 ,

we have the commuting diagram

(𝑓 ∘ (𝑔 ∘ ℎ)) ∘ 𝑘 𝑓 ∘ ((𝑔 ∘ ℎ) ∘ 𝑘)

((𝑓 ∘ 𝑔) ∘ ℎ) ∘ 𝑘 𝑓 ∘ (𝑔 ∘ (ℎ ∘ 𝑘))

(𝑓 ∘ 𝑔) ∘ (ℎ ∘ 𝑘)

𝛼𝑓,𝑔∘ℎ,𝑘

𝑓∘𝛼𝑔,ℎ,𝑘𝛼𝑓,𝑔,ℎ∘𝑘

𝛼𝑓∘𝑔,ℎ,𝑘 𝛼𝑓,𝑔,ℎ∘𝑘

• the triangular identity: for each objects 𝑋,𝑌 , 𝑍 ∈ 𝒞, and morphisms

𝑋 𝑌 𝑍𝑔 𝑓 ,

we have the commuting diagram

(𝑓 ∘ id𝑌 ) ∘ 𝑔 𝑓 ∘ (id𝑌 ∘𝑔)

𝑓 ∘ 𝑔

𝛼𝑓,id𝑌 ,𝑔

𝜌𝑓∘𝑔 𝑓∘𝜆𝑔
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The concept of 2-category we introduce here is actually (2,2)-category, which is a specific example
of (𝑛, 𝑟)-category. A general (𝑛, 𝑟)-category is a category with morphisms from 0-morphisms (objects)
to 𝑛-morphisms, whose 𝑘-morphisms are all invertible for 𝑘 > 𝑛. Thus a general 1-category is a (1,1)-
category, and a groupoid is a (1,0)-category. A (2,0)-category is also called a 2-groupoid.
Example 3.1 The category 𝖢𝖺𝗍 of categories is a 2-category, with 1-morphisms being functors and
2-morphisms being natural transformations.
Example 3.2 We consider a special kind of category with extra structure called monoidal category.
A monodial category contains the following informations:

• a category 𝒞;
• a binary operation ⊗ on 𝒞, i.e., a functor ⊗ ∶ 𝒞 × 𝒞 → 𝒞;
• an object 𝟙 ∈ 𝒞;
• natural isomorphisms

𝛼𝑋,𝑌 ,𝑍 ∶ (𝑋 ⊗ 𝑌 ) ⊗ 𝑍 → 𝑋 ⊗ (𝑌 ⊗ 𝑍), 𝜆𝑋 ∶ 𝟙 ⊗ 𝑋 → 𝑋, 𝜌𝑋 ∶ 𝑋 ⊗ 𝟙 → 𝑋,

such that the following conditions are satisfied:
• for objects 𝑋,𝑌 , 𝑍,𝑊 ∈ 𝒞, we have the commuting diagram

(𝑋 ⊗ (𝑌 ⊗ 𝑍)) ⊗𝑊 𝑋⊗ ((𝑌 ⊗ 𝑍) ⊗𝑊)

((𝑋 ⊗ 𝑌 ) ⊗ 𝑍) ⊗𝑊 𝑋⊗ (𝑌 ⊗ (𝑍 ⊗𝑊))

(𝑋 ⊗ 𝑌 ) ⊗ (𝑍 ⊗𝑊)

𝛼𝑋,𝑌⊗𝑍,𝑊

𝑋⊗𝛼𝑌 ,𝑍,𝑊𝛼𝑋,𝑌 ,𝑍⊗𝑊

𝛼𝑋⊗𝑌,𝑍,𝑊 𝛼𝑋,𝑌 ,𝑍⊗𝑊

• for objects 𝑋,𝑌 ∈ 𝒞, we have the commuting diagram

(𝑋 ⊗ 𝟙) ⊗ 𝑌 𝑋 ⊗ (𝟙 ⊗ 𝑌 )

𝑋 ⊗ 𝑌

𝛼𝑋,𝟙,𝑌

𝜌𝑋⊗𝑌 𝑋⊗𝜆𝑌

We see that the axiom a monodial category satisfies is quite similar to that satisified by a 2-category.
In fact, we can construct a 2-category 𝖡𝒞 from a monodial category 𝒞. The 2-category 𝖡𝒞 has a unique
object ∗, and the category Hom𝖡𝒞(∗, ∗) is actually by 𝒞 itself, with composition given by

⊗ ∶ Hom𝖡𝒞(∗, ∗) ×Hom𝖡𝒞(∗, ∗) → Hom𝖡𝒞(∗, ∗).

Some examples of monodial categories are (𝖵𝖾𝖼𝗍𝐹 , ⊗), (𝖵𝖾𝖼𝗍𝐹 , ⊕), (𝖲𝖾𝗍,×), (𝖲𝖾𝗍, ⊔). Each of them
induces a 2-category.
Example 3.3 Since every group can be viewed as a category, the category 𝖦𝗋𝗉 has a structure of
2-category. Its objects and 1-morphisms are just groups and group homomorphisms as we have seen
before. To see what the 2-morphisms are, we consider a natural transformation 𝛼 ∶ 𝜑 → 𝜓, where
𝜑,𝜓 ∶ 𝖡𝐺 → 𝖡𝐻 are functors induced by homomorphisms 𝜑,𝜓 ∶ 𝐺 → 𝐻. Then we have the commuting
diagram

∗ ∗

∗ ∗

𝛼(∗)

𝜑(𝑔) 𝜓(𝑔)

𝛼(∗)
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for each 𝑔 ∈ 𝐺, hence ℎ ∶= 𝛼(∗) ∈ 𝐻 gives a conjugation

𝜓(𝑔) = ℎ ⋅ 𝜑(𝑔) ⋅ ℎ−1, ∀𝑔 ∈ 𝐺.

Thus the 2-morphisms in 𝖦𝗋𝗉 are given by conjugation of homomorphisms.
Example 3.4 The category 𝖱𝗇𝗀 can also be viewed as a 2-category. The objects in 𝖱𝗇𝗀 are rings with
identity. For two rings 𝑅,𝑆 ∈ 𝖱𝗇𝗀, we let the morphisms category Hom𝖱𝗇𝗀(𝑅, 𝑆) to be the bimodule
category 𝑅𝖬𝗈𝖽𝑆. The composiiton is given by the tensor product of modules

⊗𝑆 ∶ 𝑅𝖬𝗈𝖽𝑆 × 𝑆𝖬𝗈𝖽𝑇 → 𝑅𝖬𝗈𝖽𝑇 .

With this 2-category structure, there is a functor 𝖱𝗇𝗀 → 𝖢𝖺𝗍 given by 𝑅 ↦ 𝖬𝗈𝖽𝑅 on objects and

(𝑀 ∶ 𝑅 → 𝑆) ↦ (− ⊗𝑅 𝑀 ∶ 𝖬𝗈𝖽𝑅 → 𝖬𝗈𝖽𝑆), (𝑓 ∶ 𝑀 → 𝑁) ↦ (id⊗𝑓 ∶ − ⊗𝑅 𝑀 → −⊗𝑅 𝑁)

on morphisms. If a 1-morphism 𝑀 ∶ 𝑅 → 𝑆 is invertible, that is there is a 1-morphism 𝑁 ∶ 𝑆 → 𝑅 and
2-morphisms

𝑀 ⊗𝑆 𝑁 → 𝑅, 𝑁 ⊗𝑅 𝑀 → 𝑆
which are both isomorphisms, then we call 𝑀 ∶ 𝑅 → 𝑆 a Morita equivalence. In this case,

−⊗𝑅 𝑀 ∶ 𝖬𝗈𝖽𝑅 → 𝖬𝗈𝖽𝑆
is an equivalence of categories.
Example 3.5 We have seen the fundamental groupoid Π1(𝑋) of a topological space 𝑋. In fact, the
fundamental 2-groupoid Π2(𝑋) up to the fundamental ∞-groupoid Π∞(𝑋) can also be defined.
The objects in Π2(𝑋) are points in 𝑋, as same as the objects in Π1(𝑋). The 1-morphisms from 𝑥 to
𝑦 in Π2(𝑋) are given by a path from 𝑥 to 𝑦. Recalling that we need to quotient out the homotopy
of paths in Π1(𝑋), however, the quotient process is not adopted here, instead we let the homotopy of
paths become 2-morphisms in Π2(𝑋). Somehow, the homotopy of 2-morphisms, which are continuous
maps from [0, 1] × [0, 1] to 𝑋 subject to some conditions, are indeed supposed to be quotiented out, in
order to make the axioms of 2-category satisfied. Similarly to the relation of Π1(𝑋) and 𝜋1(𝑋, 𝑥), we
can see that

𝜋2(𝑋, 𝑥) = AutAutΠ2(𝑋)(𝑥)(id𝑥), 𝑥 ∈ 𝑋,
where id𝑥 is the constant loop at 𝑥.

This is generalized to the idea of fundamental ∞-groupoid, where 𝑛-morphisms are given by homo-
topies between (𝑛−1)-morphisms for each positive integer 𝑛. An interesting problem is whether we can
recover the information of the original space by its fundamental ∞-groupoids. A topological space 𝑋 is
called a 𝑛-truncated space if 𝜋𝑘(𝑋) is trivial for each 𝑘 > 𝑛. People have shown that a 𝑛-truncated
space can be recovered from its fundamental 𝑛-groupoid, or equivalently the 𝑛-truncation of its funda-
mental ∞-groupoid, up to a weak homotopy equivalence, for a positive integer 𝑛. Whether this holds
for the infinite case is called the homotopy hypothesis. This idea continues to the homotopy type
theory, or “HoTT”.
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