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1 1-Categories and Functors

Definition 1.1 A 1-category C consists of the followings:
e a class of objects X,Y, -, for which we write X € € if X is an object in C;

o for each X,Y € € a class Home(X,Y) of morphisms, in which an element f € Home(X,Y) is
also denoted by f: X =Y, or

X L> Y ;
o for each X € € an element idy € Home (X, X);

o for each X,Y,Z € €, a function, namely composition, o : Home(X,Y) x Home(Y,Z) —
Home (X, Z) such that

— (hog)ef=ho(gof)forany f: X =Y,g:Y > Z and h: Z - W, and
—idyof = f = feidy forany f: X — Y, ie., the following diagrams commute:

xJtsy x -ty
id id
N
Y X

Example 1.1 There are many examples of categories:
1. The category Set, whose objects are sets and morphisms are maps.
2. The category Grp, whose objects are groups and morphisms are group homomorphisms.
3. The category Top, whose objects are topological spaces and morphisms are continuous maps.

The above categories are very large, in the sense that their objects form a proper class. If the class
of objects in a category is a set, then we call the category a small category.

Example 1.2 There are also examples of small categories.
1. A set S can be viewed as a category, with its elements as objects, and the morphisms are given
by
{id,}, z=y,
0, x #y.
2. Suppose G is a group. We can define a category BG with a single element * as its only object,

and the elements of G as its morphisms. The composition of two morphism g, h : * — * is given
by

HOIIIS(.'I}, y) = {

goh:=gh:*x— x

where gh is the product of g and h in the group G. The identity morphism id, is exactly the
identity element e of G.



3. Suppose (P, <) be a poset. Then P can also be viewed as a category whose objects are its
elements, and morphisms are given by

{(x’y)}v x <y,
0, otherwise.

HOIIIP(.’L', y) = {

The composition of morphisms are well-defined from the transitivity of <.

4. Suppose G = (V, E) is a directed graph. We define the path category of G, with vertices as objects
and paths from v to v’ as morphisms from v to v’. The composition are just the connection of
paths.

Definition 1.2 A morphism f : X — Y in a category C is called an isomorphism if there is a
morphism g : Y — X such that go f =idy and fo g =idy. An isomorphism from an object X € C to
itself is called an automorphism.

Example 1.3 A group homomorphism is an isomorphism in Grp if and only if it is a group isomor-
phism, and a continuous map is an isomorphism in Top if and only if it is a homeomorphism.

Note that he set of all automorphisms of an object X in €, denoted by Aute(X), is actually a group
under composition.

Example 1.4 1. In Set, the automophism group of the set {1,---,n} is isomorphic to S,, the
symmetric group of n elements.

2. By the definition of BG, we can easily see that
Autga(x) = G.

Example 1.5 Suppose X is a topological space. We define the fundamental groupoid II; (X) to be
a category whose objects are points in X, and morphisms from x, to z; are homotopic classes of paths
from x, to z,. It can be seen that

Autp, (x)(z) =m(X,2), z€X.
The fundamental groupoids can be used to give a proof of Seifert-van Kampen theorem.

Definition 1.3 A morphism f: X — Y in a category C is called a monomorphism if for each U € C,
the map
(fo—):Home(U,X) - Home(U,Y)

is a monomorphism of sets. A morphism f : X — Y in a category C is called a epimorphism if for
each U € €, the map
(—o f) : Home(Y,U) — Home(X, U)

is a monomorphism of sets.

Definition 1.4 Suppose C is a category. We define the dual category C°P of € to be the category
whose objects are just the objects of €, and the morphisms are given by

Homeop (X,Y) = Home (Y, X)
for each X,Y € C.

It is not hard to see that a morphism f : X — Y is a monomorphism in € if and only if the
corresponding f°P : Y — X is an epimorphism in in C°P.

For a group G, we can always define another group G°° with the same elements as G, and the
multiplication on G°P is given by (g, h) - hg for each g, h € G, where the right hand side is the product
in G. Clearly we have

B(G°P) = BG°P.



Definition 1.5 A functor F : € — D between two categories € and 2 assigns to each object X € €
an object F(z) € D, and to each morphism f: X — Y in € a morphism F(f) : F(X) —» F(Y) in D,
such that

¢ F(idyx) =idpx) for each X € €, and
o F(gof)=F(g9)oF(f) foreach f: X Y andg:Y — Z.

There are many things can be identified with functors between categories.

Example 1.6 1. Let 1 := {x} be the category with a single object and a single morphism, which
is the identity morphism. A functor 1 — € is then identified with an object in C.

2. Let {0 — 1} be the category defined from the poset {0 < 1}. A functor {0 — 1} — € is then
identified with a morphism in C.

3. Suppose G is a group. A functor BG to a category € is a kind of action of G on an object in C.
In particalr, a functor BG — Set is identified with a group action of G on a set, and a functor
BG — Vect is identified with a group representation of G over a field F'.

Example 1.7 We can define two different power set functors P : Set — Set and P’ : Set®® — Set.
Both functors assigns to each set X the power set P(X). However, P assigns to each map f: X - Y
the map P(f) : P(X) — P(Y) that sends A C X to its image f(A) under f, while P’ assigns to each
map f: X — Y the map P'(f) : P(Y) — P(X) that sends B C Y to its preimage f~*(B) under f.

If we consider the functor Homg,,(—, {0,1}) : Set®® — Set, then it does the same thing as P’. Such
a functor C°? — Set that can be expressed as Home(—, X) for some X € C is called a representable
functor.

Example 1.8 Consider the category Top. We can define the open set functor Open : Top°® — Set
that assigns to each topological space X the set of open subsets of X, and to each continuous map
f:+ X — Y the map Open(f) : Open(Y) — Open(X) that sends an open subset U C Y to its preimage
f~Y(U) C X. It can be shown that Open is also a representable functor. Consider the topology on {0, 1}
given by {0, {1},{0,1}}. Then Open can be identified with the functor Homy,,(—, {0, 1}) : Top®® — Set

in a natural way.

There are many functors in the category theory that are called forgetful functors. We can consider
the following sequence of forgetful functors:

oAlg > Rng > Ab > Grp > Set > 1.
However, the extent of forgetfulness of functors are not always the same.
Definition 1.6 Suppose F : C — D is a functor. We say F' is faithful if for each XY € €, the map
F : Home(X,Y) — Hom, (F(X), F(Y))
is injective. We say F' is full if for each X,Y € €, the map
F : Home(X,Y) — Hom, (F(X), F(Y))

is surjective. We say F' is fully faithful if it is both faithful and full.

In the sequence of forgetful functors above, the functors yAlg — Rng and Ab — Grp are both fully
faithful, so they only forget some properties of objects; the functors Rng — Ab and Grp — Set are
faithful but not full, so they forget some structure of objects; the functor Set — 1 is neither full nor
faithful, and it just forgets everything.



Definition 1.7 Suppose F,G : € — D are two functors. A natural transformation o : F — G,
expressed in a diagram as follows:

assigns to each object X € € a morphism ay : F(X) — G(X) in D, such that for each morphism
f:+ X — Y in C, the following diagram commutes:

If ax is an isomorphism for each X € C, then we say « is a natural isomorphism and write F’ 2 Q.

Inspired by the definition of homotopy in topology, we can view a natural transformation as a kind
of homotopy between functors. Precisely, a natural transformation « : F' — G, where F', G are functors
from € to D, is equivalent to a functor h : € x {0 — 1} — D such that h|e,, = F and hley; = G.

Note that for two categories € and 2, the functors between them form a category Fct(C, D), where
the morphisms are given by natural transformations between them.

Example 1.9 Suppose G is a group. We have seen that each functor BG — Vect is identified with
a group representation of G over a field F'. Suppose p;, ps : BG — Vecty are two representations of G.
A natural transformation ¢ : p; — p, then makes the following diagram commute for each g € G:

p1(*) s pa(*)
pl(g)l p2(9)

p1(*) —5— pa(*)

which is exactly the definition of a morphism between representations of G over F. This shows that
Fct(BG, Vecty) can be identified with the category oRep of representations of G over F, or equivalently,
the category pigMod of modules over the group ring F[G].

Definition 1.8 Suppose €, 2D are categories and F': C — D, G : D — € are functors. If Go F = id,
and F oG = idy, then we say that F' is a equivalence of categories and that € and 2 are equivalent,
denoted by € ~ D.

Example 1.10 Suppose C is the category that consists of three objects and a pair of isomorphisms
between each pair of objects. Then it is not hard to see that € is equivalent to 1.

Example 1.11 We may guess that a category € whose morphisms are all isomorphisms is equivalent
to 1. However, this is not true. In fact, by the axiom of choice, we can show that

€ ~ B Aute(X)

if there is an object X € € such that Home(X,Y) # 0§ for each Y € €.

To see this, take an isomorphism fy : X — Y for each Y € €. Then we can define a functor
F : € — BAute(X) that assigns to each object Y in € the only object * € B Aute(X), and to each
morphism ¢ : Y — Z the automorphism f;' o go fy. If we define G : BAute(X) — € in the natural
way so that it sends * to X and each automorphism h : * — * to h € Aute(X), then we can see that
F oG 2idgpy,(x) and G o F = ide, implying that € ~ B Aute(X).

In this case, € = 1 if and only if Aute(X) is trivial.



2 Universal Constructions and Yoneda Embedding

Definition 2.1 Let C be a category. If there is an object 1 € € such that for each object X in C, the
set Home (X, 1) has exactly 1 element, then we call 1 an final object in €. If there is an object 0 € €
scuh that for each object X in €, the set Home(0, X) has exactly 1 element, then we call 0 an initial
object in C.

It can be seen that if a final or an initial object exists, then it is unique up to isomorphism.

Example 2.1 1. For the category Top of topological spaces, the final object is the topological space
{*} of a single point, and the initial object is the empty set (.

2. For the category Set of sets, the final object and the initial object are both the trivial group {e}.

3. Cousider the category given by a poset (P, <). Its final element is the maximum max P of P if it
exists, and its initial element is the minimum min P of P if it exists.

Before introducing the concept of limits and colimits, we conduct a principle that an object can
always be described by how it interacts with other objects, i.e., the morphisms to it or from it are all
we are concern with an object.

Definition 2.2 Consider a graph F': I — C, i.e., a functor from an index category to a category C.
A comne on F consists of a vertex ¢ € €, and for ecah i € I a morphism f(i) : ¢ — F(i) such that for
each morphism ¢ : i — j in I, the following diagram commutes:

F(i)
c
Iy
F(j
When the morphisms from the vertex c is clear, we may just represent the cone by its vertex c.
Equivalently, we can define a cone on F to be a natural transformation from the constant functor

¢ to F, where ¢(i) = c for all ¢ € I and ¢(¢) = id, for all ¢ : 4 — j in I. Denote the category of cones
on F by Cone(F'), where a morphism « : ¢ — ¢’ is a natural transformation « such that the following

diagram commutes:
[ ’
c——— ¢
F

The limit of F is defined to be the final object in Cone(F) if it exists, and is denoted by lim F'.

Dually, we can define a cocone on F' : I — € to be a natural transformation from F to the constant
c. The category of concones on F, denoted by CoCone(F), is defined in a similar way. The colimit of
F is then defined to be the initial object in CoCone(F) if it exists, and is denoted by colim F'.

F(p)
)

J

In the spirit of the principle we conducted, we can actually defined the limit and the colimit by the
following isomorphism of sets that is natural in X € C:

Hom@(colim }7‘7 X) = HOInFCt(I,C’) (}7’7 X), HOIII@(‘X7 lim F) = HOcht(I’e) ()(7 F),

where X represents the constant functor to X € C.

Example 2.2 The product and coproduct of objects in a category € can be defined to be the limit and
the colimit of a graph with the index category to be the discrete category given by a set I, respectively.
Specifically, consider an index set I, which can also be viewed as a discrete category. Then a functor



F : I — C is always identified with a family {X;},c; of objects in €. The product of the family {X},c;
is defined to be the limit lim F' of F', while the coproduct of the family {X;},.; is defined to be the
colimit colim F'. We denote the product and the coproduct, respectively, by

[[x: and J[X.

el el

The product and coproduct of two objects X and Y can be expressed by the following diagrams:

Z X — XUY <—Y
/H!i\ =
X¢+—— XxY —Y Z

1. For Grp, the product is the direct product of groups and the coproduct is the free product of
groups.

2. For Ab, the product is the direct product as well, while the coproduct is the direcu sum of abelian
groups.

3. For Rng, the product is still the direct product, and the product is the tensor product (over Z).

Example 2.3 We can define the sequential (co)limit for a sequence of objects in a category. To
define the sequential limit, we take the index category to be the poset (Z_y, <), and then a functor
F:{+——-2——1—0}— C is identified with the following sequence:

o —— F(—-2) —— F(—1) —— F(0)

The colimit colim F' of such sequence is clearly just F'(0), and the limit lim F' is called the limit of the
sequence.

1. Consider the following sequence in Rng, where the morphisms are given by quotient map:
o —— Z/p° — L[p* — Z/p

The limit of this sequence is called the ring of p-adic integers, denoted by Z,.

2. Consider another sequence in Rng given below, where k[z] is the polynomial ring over a field k:
-+ — k[2]/(a®) — k[z]/(2*) — klz]/(z)

The limit of the sequence is the formal power series ring k[[z]] over k.

For the sequential colimit, we take the poset (Z-,, <) as the index category, and then a functor F :

{0 > 1—2— -} — C is identified with a sequence of the following form:
F0) — F(1) — F(2) — -
It can be seen the limit lim F' is just F'(0). The colimit of the sequence is defined to be the colimit
colim F'.
1. The sequence in Ab,

7 < >%Zf S

7, < S .-

%

where each morphism is the canonical embedding, has the colimit

1
colim:Z[—] ={£|nEZ,r€Z>O} c Q.
p p" B



2. Consider the following sequence in Top, where each morphism embeds S™ to the equator of S™*!:

Ste—s 82— 83—y -

The colimit of the this sequence is called the infinite sphere S°°, which is also the unit sphere in
R>* = @, R.

Example 2.4 For a diagram of the following form:
X —Y<+— 7

we usaully call its limit W a pullback or a fiber product, and demonstrate it by the following diagram
called a pullback diagram:
—

< — =

|

<N

Dually, for a diagram of the follwing form:

B+—A—~C

its colimit D is often called a pushout or a fiber coproduct, and is showed by the following diagram
called a pushout diagram:

A——C

L

B—— D
1. In Set, the pullback of X and Z to Y is given by
W ={(z,2) e X x Z| f(z) = g(2)},
and the pushout of B and C from A is given by
D=(BUC)/~, f(a)~g(a),ac A

2. Consider a continuous map f: X — Y and a vector bundle p : E — Y in Top. We can define the
pullback bundle p’ : f*E — X of E by the pullback diagram:

f'E —> E

I
X ——Y

3. Suppose X is a topological space in Top. We have the embedding X — CX, where CX is the
cone on X. Together with the suspension SX of X, we have the pushout diagram:

X — CX

[

CX «—— SX

Example 2.5 Consider the functor F' : BG — Set which is usually identified with a group action of
G on a set F(x). We can see that the limit of F is

limF = {z € F(x) | gz = z,VYg € G},

and the colimit of F' is
colimF = {Gz |z € F(x)} = F(%)/G,

which is exactly the orbit space of the action.



Recalling our principle of description of objects, we see that for an object X € €, the following
functors are of great significance:

Home(—, X) : C°P — Set, and Home(X,—): € — Set.

Such point of view introduce us to a functor called Yoneda embedding € — Fct(C°P, Set) that assigns
to each object X the functor Home(—, X) and to each morphism f : X — Y the natural transformation
Home(—, X) — Home(—,Y) given by the following diagram:

Hom(Z, X) s Home(Z,Y)

N AN

(hoeg:Z—=>X)—— (fohog:Z —=>Y)

[ [

(h:W—oX)—— (foh:WY)

Home (W, X) > Home(W,Y)

Yoneda embedding maps € into a somehow larger category Fct(C°P,Set). To see that it is reasonable
to call this an embedding, we need Yoneda Lemma:

Theorem 2.1 (Yoneda Lemma) There is a bijection
F(X) 2 Homgy (o ser) (Home (—, X), F)
that is natural in both X € € and F' € Fct(C°P, Set).

Proof. The natural bijection is given as followings:

F(X) - Hocht(E’OP,Set)(HomC’(*v X)v F)a
z + (&:Home(—X)— F);
(a(X))(idx) = a,

where the natural transformation Z is defined by

2(Y):Hompe(Y,X) = F(Y), f (F(f) ().

Corollary 2.2 Yoneda embedding is a fully faithful functor, i.e., the induced map of sets
HOIII@ (X7 Y) - Hocht(C’OP,Set) (HOIH@ (_a X)a HOHI@(—, Y))

is bijective for each objects X,Y € C.

There is not always a limit or colimit of a functor ' : I — C for a general category €. However, it
can be shown that limits and colimits in € always exists, and so as those in Fct(€C°P, Set) and Fct(C, Set).
We can also show that for a functor F': I — € such that lim; F'(i) = lim F' and colim; F'(4) = colim F'
both exist, it is true that

Home(—,lim F'(3)) = lim Home(—, F(i)) and Home(colim F(4), —) = lim Home (F (), —)

? K3 ?

in a natural way. Thus Yoneda embedding is a kind of completion of €.



Definition 2.3 Suppose F : € — D and G : D — C are functors between categories € and 2. If there
is a natural isomorphism Hom(F(X),Y) = Home(X,G(Y)) for all X € € and Y € D, then we say
that F is a left adjoint of G and G is a right adjoint of F.

Theorem 2.3 Suppose F': € — D is a left adjoint of G : D — € and G is a right adjoint of F. Then
for a graph X : I — C we have
F(colim X (7)) = colim F(X (7))

if colim; X (¢) exists, and for a graph Y : I — 2 we have

G(lim Y (1)) = lim G(Y (1))

if lim,; Y (4) exists.
Proof. It suffices to show that

HomD(F(coliim X(%)),2) = HomD(coliim F(X(1)),2)

naturally in Z € D. This can be seen from the following sequence of natural isomorphisms:

HomD(F(coliim X)), Z) = Home(coliim X(3),G(Z))
= lizmHome(X(i), G(Z2))
= 11?1 Hom,, (F(X (7)), Z)

= Hom,(colim F'(X (7)), Z).

The case is similar for G(lim, Y (¢)) and lim; G(Y (%)). O

3 2-categories

For two categories € and 2, we see that Fct(C, D) is not only a set but also a category, with functors
being natural transformations. In such case, we barely consider if two functors F',G : € — D are equal.
Instead, whether a natural transformation « : F' — G is an isomorphism is what we are concerned with.
This induces the opinion that in a category with n-morphisms (although we have not defined, this can
be interpreted in an intuitive way), we are not supposed to discuss the equality of k-morphisms (k < n),
yet a (k 4+ 1)-morphism is whether an equivalence is more worth considering.

Definition 3.1 A strict 2-category consists of the folowings:
e a class of objects X,Y, -

o a class of 1-morphisms f: X — Y and an identity 1-morphism idy for each object X, such that
the composition of 1-morphisms satisfies the associativity;

¢ aclass of 2-morphisms « : f — g where f,g: X — Y are 1-morphisms and an identity 2-morphism
id; for each 1-morphism f, such that the composition of 2-morphisms satisfies the associativity.

In other words, we have a category Hom(X,Y") for each pair of objects (X,Y).

This is the direct generalization of the concept of 1-categories. It is worth noting that by this
definition, we need to talk about whether two objects in the category Hom(X,Y) are equal instead
of equivalent. This violates the opinion we have stated! So we need to modify our definition for
2-categories.

Definition 3.2 A (weak) 2-category C consists of the followings:



« a class of objects;

o for each objects X,Y € €, a category Home(X,Y), whose objects are called 1-morphisms of €
and whose morphisms are called 2-morphisms of C;

o for each object X € €, a 1-morphism id y € Home (X, X).
e for each X,Y,Z € €, a functor
o: Home(Y, Z) x Home(X,Y) — Home (X, Z),
called the composition of morphisms;

o for each X,Y € €, two natural isomorphisms:

idy o— —oid 5
— ] T ] T
Home(X,Y) HAX,Y Home(X,Y) Home(X,Y) ﬂpx,y Home(X,Y)
\_/ \_/

id id
e for each X,Y,Z,W € €, a natural isomorphism:
Home(X,Y) x Homp (Y, Z) x Home(Z, W) “4%% Hom,(X,Y) x Hom, (Y, W)

oxid XY, Z,W °
e

Home (X, Z) x Home(Z, W) > Home (X, W)

o

such that the following identities are satisfied:

e the pentagonal identity: for each objects X,Y,Z W,V € €, and morphisms

Vvt w -ty x sy N

we have the commuting diagram

(folgoh))ok Lt 5 fo((geh)ok)
O‘LV \f"ag,h,k
((feg)oh)ok /fo(go(h°k))
(fog)o (hok)

o the triangular identity: for each objects X,Y,Z € €, and morphisms
X2y Jtyz7,
we have the commuting diagram

@y

(foidy)og Ty fo(idy og)

mm

fog

10



The concept of 2-category we introduce here is actually (2,2)-category, which is a specific example
of (n,r)-category. A general (n,r)-category is a category with morphisms from 0-morphisms (objects)
to n-morphisms, whose k-morphisms are all invertible for & > n. Thus a general 1-category is a (1,1)-
category, and a groupoid is a (1,0)-category. A (2,0)-category is also called a 2-groupoid.

Example 3.1 The category Cat of categories is a 2-category, with 1-morphisms being functors and
2-morphisms being natural transformations.

Example 3.2 We consider a special kind of category with extra structure called monoidal category.
A monodial category contains the following informations:

e a category C;
e a binary operation ® on C, i.e., a functor ® : € x € — C;
e an object 1 € C;

e natural isomorphisms

axyz: (X®Y)®Z-X®(Y®Z), 18X =X, px:X®1—X,

such that the following conditions are satisfied:

o for objects X,Y,Z, W € C, we have the commuting diagram

AX,YRZ,W

(X@(Y®2)0W > XR(Y®2Z)eW)

ax,YW \X@a‘;z,w

(X®Y)®2Z2)9W X®(Y®(ZW))

AXQY,Z,W XY, ZW

(XQY)®(ZeW)

« for objects X,Y € €, we have the commuting diagram

xXx 1Yy

(X®1 » X (1QY)

)Y
Pm AY
X®Y

We see that the axiom a monodial category satisfies is quite similar to that satisified by a 2-category.
In fact, we can construct a 2-category BC from a monodial category €. The 2-category BC has a unique
object *, and the category Hompge (%, *) is actually by € itself, with composition given by

® : Hompge(*, *) x Homge(*, *) — Hompe (*, *).

Some examples of monodial categories are (Vectyp,®), (Vecty, ®), (Set, x), (Set, ). Each of them
induces a 2-category.

Example 3.3 Since every group can be viewed as a category, the category Grp has a structure of
2-category. Its objects and 1-morphisms are just groups and group homomorphisms as we have seen
before. To see what the 2-morphisms are, we consider a natural transformation a : ¢ — 1, where
p,% : BG — BH are functors induced by homomorphisms ¢, : G — H. Then we have the commuting
diagram

* ﬂ} *

so(g)l lw(m
—> %

afx)

11



for each g € G, hence h := «a(*) € H gives a conjugation

W(g)=h-lg)-h!, VgeG.
Thus the 2-morphisms in Grp are given by conjugation of homomorphisms.

Example 3.4 The category Rng can also be viewed as a 2-category. The objects in Rng are rings with
identity. For two rings R, S € Rng, we let the morphisms category HomRng(R, S) to be the bimodule
category pModg. The composiiton is given by the tensor product of modules

®S: RMOdS X SMOdT — RMOdT'
With this 2-category structure, there is a functor Rng — Cat given by R = Mody on objects and
(M:R—S) (—®zp M :Mody — Modg), (f:M—>N) (d®f: —Qzr M — —®z N)

on morphisms. If a 1-morphism M : R — S is invertible, that is there is a 1-morphism N : S — R and
2-morphisms
M®sN—-R, NQpM—S

which are both isomorphisms, then we call M : R — S a Morita equivalence. In this case,
—®r M : Modp — Modg

is an equivalence of categories.

Example 3.5 We have seen the fundamental groupoid II; (X) of a topological space X. In fact, the
fundamental 2-groupoid II,(X) up to the fundamental co-groupoid II__(X) can also be defined.
The objects in II,(X) are points in X, as same as the objects in II;(X). The l-morphisms from z to
y in II,(X) are given by a path from z to y. Recalling that we need to quotient out the homotopy
of paths in II; (X), however, the quotient process is not adopted here, instead we let the homotopy of
paths become 2-morphisms in II,(X). Somehow, the homotopy of 2-morphisms, which are continuous
maps from [0,1] x [0,1] to X subject to some conditions, are indeed supposed to be quotiented out, in
order to make the axioms of 2-category satisfied. Similarly to the relation of II; (X) and m (X, z), we
can see that
(X, x) = AutAutH2(X)(x>(idx), reX,

where id,, is the constant loop at z.

This is generalized to the idea of fundamental co-groupoid, where n-morphisms are given by homo-
topies between (n— 1)-morphisms for each positive integer n. An interesting problem is whether we can
recover the information of the original space by its fundamental co-groupoids. A topological space X is
called a n-truncated space if 7, (X) is trivial for each k > n. People have shown that a n-truncated
space can be recovered from its fundamental n-groupoid, or equivalently the n-truncation of its funda-
mental co-groupoid, up to a weak homotopy equivalence, for a positive integer n. Whether this holds
for the infinite case is called the homotopy hypothesis. This idea continues to the homotopy type
theory, or “HoTT”.
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