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1 Differentiable Manifolds

1.1 Tangent Spaces

Suppose M is an m-dimensional smooth manifold. Fix a point p ∈ M .
Denote the set of all C∞ functions defined in a neighborhood of p by C∞

p .
Define a relation ∼ in C∞

p as follows. Suppose f, g ∈ C∞
p . Then f ∼ g if

and only if there exists an open neighborhood H of the point p such that
f |H = g|H . Obviously ∼ is an equivalence relation in C∞

p . The equivalence
class of f is denoted by [f ], called a C∞-germ at p on M . Let

Fp = C∞
p / ∼ = {[f ] | f ∈ C∞

p }.

Then Fp is a linear space over R with regular addition and scalar multipli-
cation.

For a parametrized curve γ inM through a point p, there exists a positive
number δ such that γ : (−δ, δ) → M is C∞ with γ(0) = p. Denote the set
of all these parametrized curves by Γp.

We introduce a pairing between Γp and Fp by letting

⟨γ, [f ]⟩ = d(f ◦ γ)
dt

∣∣∣∣
t=0

for each γ ∈ Γp and [f ] ∈ Fp. This pairing is well-defined and linear in the
second variable. Let

Hp = {[f ] ∈ Fp | ⟨γ, [f ]⟩ = 0,∀γ ∈ Γp}

be a linear subspace of Fp.
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Theorem 1.1.1 Suppose [f ] ∈ Fp. For a chart (U,φ), let F = f ◦ φ−1 be
a function from an open subset of Rm to R. Then [f ] ∈ Hp if and only if

∂F

∂xi

∣∣∣∣
φ(p)

= 0, 1 ≤ i ≤ m.

Definition 1.1.1 The quotient space Fp/Hp is called the cotangent space
of M at p, denoted by T ∗

p or T ∗
p (M). The Hp-equivalence class of the C∞-

germ [f ] is denoted by (df)p, called a cotangent vector on M at p.

The cotangent space T ∗
p is a linear space with the linear structure induced

from Fp.

Theorem 1.1.2 Suppose f1, f2, · · · , fs ∈ C∞
p and F (y1, y2, · · · , ys) is a

smooth function in a neighborhood of (f1(p), f2(p), · · · , fs(p)) ∈ Rs. Then
f = F (f1, f2, · · · , fs) ∈ C∞

p and

(df)p =

s∑
k=1

ï
∂F

∂yk
(f1(p), f2(p), · · · , fs(p)) · (dfk)p

ò
.

Corollary 1.1.3 For any f, g ∈ C∞
p , a ∈ R, we have

1. (d(f + g))p = (df)p + (dg)p,

2. (d(af))p = a · (df)p, and

3. (d(fg))p = f(p) · (dg)p + g(p) · (df)p.

Choose a chart (U,φ) and define local coordinates ui by ui(p) = (φ(p))i =
xi ◦ φ(p), p ∈ U , where xi is the standard coordinate system of Rm. Then
ui ∈ C∞

p and (dui)p ∈ T ∗
p , 1 ≤ i ≤ m. Choose λk ∈ Γp, 1 ≤ k ≤ m such that

ui ◦ λk(t) = ui(p) + δikt.

Then we have

⟨λk, [ui]⟩ =
d

dt
(ui ◦ λk(t))

∣∣∣∣
t=0

= δik.

Theorem 1.1.4 {(dui)p, 1 ≤ i ≤ m} is a basis of T ∗
p , called the natural

basis of T ∗
p with respect to the local coordinate system ui. It then follows

that dimT ∗
p = m.
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Proof. By Theorem 1.1.2, for each f ∈ C∞
p , (df)p is a linear combination of

the (dui)p, 1 ≤ i ≤ m.
If there exist real numbers ai, 1 ≤ i ≤ m such that

m∑
i=1

ai(du
i)p = 0,

then for any γ ∈ Γp, we have〈
γ,

m∑
i=1

ai[u
i]

〉
=

m∑
i=1

ai
d(ui ◦ γ(t))

dt

∣∣∣∣
t=0

= 0.

Let γ = λk and we will obtain ak = 0, 1 ≤ k ≤ m, i.e. {(dui)p, 1 ≤ i ≤ m}
is linearly independent. Therefore it forms a basis for T ∗

p .

We can simply define the pairing between Γp and T ∗
p by

⟨γ, (df)p⟩ = ⟨γ, [f ]⟩

for each γ ∈ Γp and (df)p ∈ T ∗
p after the definition of Hp and T ∗

p . Define a
relation ∼ on Γp as follows. Suppose γ, γ′ ∈ Γp. Then γ ∼ γ′ if and only if
for any (df)p ∈ T ∗

p ,
⟨γ, (df)p⟩ = ⟨γ′, (df)p⟩.

This is again an equivalence relation. Denote the equivalence class of γ by
[γ]. We can then define

⟨[γ], (df)p⟩ = ⟨γ, (df)p⟩

without chance of confusion.

Theorem 1.1.5 The ⟨[γ], ·⟩, γ ∈ Γp represent the totality of linear func-
tionals on T ∗

p and form its dual space, Tp, called the tangent space of M
at p. Elements of the tangent space are called tangent vectors of M at p.

Proof. Suppose α is a linear functional on T ∗
p . Let ξ

i = α(dui)p, 1 ≤ i ≤ m.
Choose γ ∈ Γp such that

ui(t) = ui(p) + ξit.

Then

⟨[γ], (df)p⟩ =
m∑
i=1

ξi
∂(f ◦ φ−1)

∂ui

∣∣∣∣
φ(p)

= α(df)p.
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Therefore each linear functional on T ∗
p can be expressed as ⟨[γ], ·⟩ for some

γ ∈ Γp. Moreover, if ⟨[γ], ·⟩ and ⟨[γ′], ·⟩ are the same linear functionals on
T ∗
p , then [γ] = [γ′]. Therefore, we can identify the space of [γ], γ ∈ Γp with

the dual space of T ∗
p .

The pairing ⟨X, (df)p⟩, X = [γ] ∈ Tp, (df)p ∈ T ∗
p is a bilinear map from

Tp × T ∗
p to R. Noting that

⟨[λk], (dui)p⟩ = δik, 1 ≤ i, k ≤ m,

{[λk], 1 ≤ k ≤ m} is the basis of Tp dual to the basis {(dui), 1 ≤ i ≤ m} of
T ∗
p . The tangent vectors can also be seen as functions from C∞

p to R. For a
general f ∈ C∞

p , we have

⟨[λk], (df)p⟩ =

〈
[λk],

m∑
i=1

ñÅ
∂f

∂ui

ã
p

· (dui)p

ô〉
=

Å
∂f

∂uk

ã
p

,

where (∂f/∂ui)p means (∂(f ◦φ−1)/∂xi)φ(p). Thus the [λk] can be identified

with the partial differential operators (∂/∂uk)p on the space C∞
p . The basis

{(∂/∂uk)p, 1 ≤ k ≤ m} is called the natural basis of Tp with respect to
the local coordinate system ui.

The lower index p of tangent and cotangent vectors can be suppressed
for simplicity if there is no chance of confusion.

Definition 1.1.2 Suppose X ∈ Tp, f ∈ C∞
p . Then (df)p ∈ T ∗

p is called
the differential of f at the point p. Denote Xf = ⟨X,df⟩, then Xf is
called the directional derivative of the function f along the vector X.

Theorem 1.1.6 Suppose X ∈ Tp, f, g ∈ C∞
p , α, β ∈ R. Then

1. X(αf + βg) = αXf + βXg;

2. X(fg) = f(p)X(g) + g(p)X(g).

The above properties of tangent vectors also give an alternative definition
of tangent vectors.

Smooth maps between smooth manifolds induce linear maps between
tangent spaces and between cotangent spaces. Suppose F : M → N is a
smooth map, p ∈ M, q = F (p) ∈ N . Define the map F ∗ : T ∗

q (N) → T ∗
p (M)

by F ∗(df) = d(f ◦ F ), df ∈ T ∗
q (N). This is a well-defined linear map,

called the differential of the map F . The adjoint of F ∗, namely the map
F∗ : Tp(M) → Tq(N) given by

⟨F∗X, a⟩ = ⟨X,F ∗a⟩, X ∈ Tp(M), a ∈ T ∗
q (N),
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is called the tangent map induced by F .
Suppose ui and vα are local coordinates near p and q, respectively. Then

the map F can be expressed near p by the functions

Fα(u1, · · · , um) = vα ◦ F (u1, · · · , um), 1 ≤ α ≤ n.

Then the action of F ∗ on the natural basis {(dvα), 1 ≤ α ≤ n} is given by

F ∗(dvα) = dFα =
m∑
i=1

Å
∂Fα

∂ui

ã
p

· dui.

Hence the matrix representation of F ∗ in the natural bases {dvα} and {dui}
is exactly the Jacobian matrix

(
(∂Fα/∂ui)p

)
. Similarly, the action of F∗ on

the natural basis {∂/∂ui, 1 ≤ i ≤ m} is given by≠
F∗

Å
∂

∂ui

ã
, dvα

∑
=

≠
∂

∂ui
, F ∗(dvα)

∑
=

m∑
j=1

Å
∂Fα

∂uj

ã
p

≠
∂

∂ui
, duj
∑

=

Å
∂Fα

∂ui

ã
p

=

n∑
β=1

Ç
∂F β

∂ui

å
p

≠
∂

∂vβ
,dvα

∑
=

∞
n∑

β=1

Ç
∂F β

∂ui

å
p

Å
∂

∂vβ

ã
,dvα

∫
,

i.e.

F∗

Å
∂

∂ui

ã
=

n∑
β=1

Ç
∂F β

∂ui

å
p

Å
∂

∂vβ

ã
.

Therefore the matrix representation of F∗ in the natural bases {∂/∂ui} and
{∂/∂vα} is still the Jacobian matrix

(
(∂Fα/∂ui)p

)
.

1.2 Submanifolds

Using the Inverse Function Theorem for Rn and the local coordinate systems
of manifolds, we can obtain the following generalization for manifolds.

5



Theorem 1.2.1 Suppose M and N are both n-dimensional smooth man-
ifolds, and f : M → N is a smooth map. If at a point p ∈ M , the tangent
map f∗ : Tp(M) → Tf(p)(N) is an isomorphism, then there exists a neigh-
borhood U of p in M such that V = f(U) is a neighborhood of f(p) in N
and f |U : U → V is a diffeomorphism.

If M is an m-dimensional manifold and N an n-dimensional manifold,
f :M → N is smooth, and the tangent map f∗ is injective at a point p, then
f∗ is said to be nondegenerate at p. In this case, we have m ≤ n, and the
rank of the Jacobian matrix of f at p is m.

Theorem 1.2.2 Suppose M is an m-dimensional manifold and N an n-
dimensional manifold, m < n. If f : M → N is a smooth map and the
tangent map f∗ is nondegenerate at a point p in M , then there exist lo-
cal coordinate systems (U ;ui) near p and (V ; vα) near q = f(p) such that
f(U) = V , and the map f |U can be expressed by local coordinates as®

vi(f(x)) = ui(x), 1 ≤ i ≤ m;

vγ(f(x)) = 0, m+ 1 ≤ γ ≤ n.

for each x ∈ U .

Proof. Take local coordinate systems (U ;ui) and (V ; vα) at p and q, respec-
tively, such that ui(p) = 0 and vα(q) = 0. Since f∗ is nondegenerate at p,
we may assume that

∂(f1, f2, · · · , fm)

∂(u1, u2, · · · , um)

∣∣∣∣
ui=0

̸= 0.

Let In−m = {(wm+1, · · · , wn) | |wγ | ≤ δ,m + 1 ≤ γ ≤ n}, where δ is a
sufficiently small positive number. By suitably shrinking the neighborhood
U , we can define a smooth map f̃ : U × In−m → V such that®
f̃ i(u1, · · · , um, wm+1, · · · , wn) = f i(u1, · · · , um), 1 ≤ i ≤ m;

f̃γ(u1, · · · , um, wm+1, · · · , wn) = wγ + fγ(u1, · · · , um), m+ 1 ≤ γ ≤ n.

The Jacobian matrix of f̃ at (ui, wγ) = (0, 0) is nondegenerate. It follows
by Theorem 1.2.1 that f̃ is a diffeomorphism ina neighborhood of (0, 0). We
may assume that f̃ : U × In−m → V is a diffeomorphism. Then there exists
a coordinate system v̄α in the neighborhood V of q such that f̃ is expressed
as ®

v̄i(f̃(u1, · · · , um, wm+1, · · · , wn)) = ui, 1 ≤ i ≤ m;

v̄γ(f̃(u1, · · · , um, wm+1, · · · , wn)) = wγ , m+ 1 ≤ γ ≤ n.
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Thus the local coordinate systems (U ;ui) and (V ; v̄α) are the desired.

Definition 1.2.1 Suppose M and N are smooth manifolds. If there is a
smooth map φ :M → N such that the tangent map φ∗ : Tp(M) → Tφ(p)(N)
is nondegenerate at any point p ∈ M , then φ is called an immersion,
and (φ,M) an immersed submanifold of N . Furthermore, if φ is also
injective, then (φ,M) is called a smooth submanifold, or imbedded
submanifold, of N .

By Theorem 1.2.2, an immersion is locally injective, but not necessarily
so globally.

Example 1.2.1 Suppose U is an open subset of N . By restricting the
smooth structure of N to U , we obtain a smooth structure on U , which
makes U a smooth manifold with the same dimension as N . Let φ : U → N
be the inclusion map, then (φ,U) becomes an imbedded submanifold of N ,
called an open submanifold of N .

Example 1.2.2 Suppose (φ,M) is a smooth submanifold of N . If

1. φ(M) is a closed subset of N ;

2. for any point q ∈ φ(M), there exists a local coordinate system (U ;ui)
such that φ(M) ∩ U is defined by

um+1 = um+2 = · · · = un = 0,

where m = dimM ,

then we call (φ,M) a closed submanifold of N .

For an imbedded submanifold (φ,M), since φ is injective, the differen-
tiable structure of M can be transported to φ(M), making φ : M → φ(M)
a diffeomorphism. On the other hand, being a subset of N , φ(M) has an
induced topology from N . The topology on φ(M) obtained fromM through
φ is not necessarily the same as the one induced from N .

Definition 1.2.2 Suppose (φ,M) is a smooth submanifold of N . If φ :
M → φ(M) ⊂ N is a homeomorphism, then (φ,M) is called a regular
submanifold of N , and φ is called a regular imbedding of M into N .

Theorem 1.2.3 Suppose (φ,M) is an m-dimensional submanifold of an
n-dimensional smooth manifold of N . Then (φ,M) is a regular submanifold
of N if and only if it is a closed submanifold of an open submanifold of N .
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Proof. First we show that a closed submanifold (φ,M) of N is a regular
submanifold. Choose an arbitrary point p ∈ M . There exists a local coor-
dinate system (V ; vα) at the point q = φ(p) in N such that φ(M) ∩ V is
defined by

vm+1 = vm+2 = · · · = vn = 0.

Since φ is continuous, there exists a local coordinate system (U ;ui) such
that φ(U) ⊂ V . We may assume that ui(p) = 0, vα(q) = 0, and V =
{(v1, · · · , vn) | |vα| < δ}, where δ is a positive number. Thus φ(U) ⊂
φ(M) ∩ V .

The goal is to prove that φ−1 : φ(M) ⊂ N →M is also continuous. The
map φ|U can be expressed locally by®

vi = φ(u1, · · · , um), 1 ≤ i ≤ m;

vγ = 0, m+ 1 ≤ γ ≤ n.

Since φ∗ is nondegenerate at p, the Jacobian

∂(φ1, φ2, · · · , φm)

∂(u1, u2, · · · , um)

∣∣∣∣
ui=0

̸= 0.

By the Inverse Function Theorem, there exists δ1 with 0 < δ1 < δ such that
there is an inverse function set

ui = ψi(v1, · · · , vm), |vi| < δ1

of the function set (φ1, · · · , φm). Let V1 = {(v1, · · · , vn) | |vα| < δ1},
then the entire preimage of φ(M) ∩ V under φ is contained in U . Hence
φ : M → φ(M) ⊂ N is a homeomorphism, which implies that (φ,M) is a
regular submanifold of N .

Conversely, suppose (φ,M) is a regular submanifold of N . Let p ∈ M .
Then for any neighborhood U ⊂ M of p, there exists a neighborhood V
of q = φ(p) in N such that φ(U) = φ(M) ∩ V . By Theorem 1.2.2, there
exist local coordinate systems (U1;u

i) for p and (V1; v
α) for q such that

φ(U1) ⊂ V1, and φ|U1 can be expressed in local coordinates as

φ(u1, · · · , um) = (u1, · · · , um, 0, · · · , 0).

We may assume that U1 ⊂ U . Hence we can choose V1 ⊂ V with φ(U1) =
φ(M) ∩ V1. Here we can see that φ(M) ∩ V is actually defined by

vm+1 = · · · = vn = 0.
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For each q ∈ φ(M), use Vq to represent the corresponding neighborhood
V1 of q in N defined above. Let W =

⋃
q∈φ(M) Vq. It is obvious that W is

an open submanifold of N containing φ(M). We only need to show that
φ(M) is relatively closed in W , or equivalently, φ(M)∩W = φ(M). Choose
any point s ∈ φ(M) ∩W . Then there exists q ∈ φ(M) such that s ∈ Vq.
By the choice of Vq, φ(M) ∩ Vq is a relatively closed subset of Vq. Since

s ∈ φ(M)∩Vq, we have s ∈ φ(M)∩Vq. Therefore φ(M)∩W ⊂ φ(M). This
proves that (φ,M) is a closed submanifold of the open submanifold W of
N .

Theorem 1.2.4 Suppose (φ,M) is a submanifold of a smooth manifold
N . If M is compact, then φ :M → N is a regular imbedding.

Proof. Because φ : M → φ(M) ⊂ N is a continuous bijection from a
compact space to a Hausdorff space, it must be a closed map and then
a homeomorphism. Therefore, (φ,M) is a regular submanifold of N by
definition.

2 Exterior Differential Calculus

2.1 Tensor Bundles and Vector Bundles

SupposeM is anm-dimensional smooth manifold, Tp and T
∗
p are the tangent

and cotangent space of M at p. Then there is an (r, s)-type tensor space

T r
s (p) = Tp ⊗ · · · ⊗ Tp︸ ︷︷ ︸

r terms

⊗T ∗
p ⊗ · · · ⊗ T ∗

p︸ ︷︷ ︸
s terms

of M at p, which is an mr+s-dimensional vector space. Let

T r
s =

⋃
p∈M

T r
s (p).

We will introduce a topology on T r
s so that it becomes a Hausdorff space

with a countable basis, and then define a smooth structure to make it a
smooth manifold.

Suppose V is an m-dimensional vector space over R. Choose a basis
{e1, e2, · · · , em} in V , and then each element y ∈ V can be expressed as a
row coordinate vector

y = (y1, y2, · · · , ym).
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The space V r
s of all (r, s)-type tensors on V has a basis

ei1 ⊗ ei2 ⊗ · · · eir ⊗ e∗j1 ⊗ e∗j2 ⊗ · · · e∗js , 1 ≤ iα, jβ ≤ m.

Thus the elements of V r
s can also be expressed by components.

Consider a coordinate neighborhood U on M with local coordinates
u1, · · · , um. Then for any p ∈ U ,Å

∂

∂ui1

ã
p

⊗ · · · ⊗
Å

∂

∂uir

ã
p

⊗ (duj1)p ⊗ · · · ⊗ (dujs)p, 1 ≤ iα, jβ ≤ m

forms a basis of T r
s (p). We can define a map

φU : U × V r
s →

⋃
p∈U

T r
s (p)

such that for any p ∈ U, 1 ≤ iα, jβ ≤ m, we have

φU (p, ei1 ⊗ · · · eir ⊗ e∗j1 ⊗ · · · e∗js)

=

Å
∂

∂ui1

ã
p

⊗ · · · ⊗
Å

∂

∂uir

ã
p

⊗ (duj1)p ⊗ · · · ⊗ (dujs)p ∈ T r
s (p).

Such a φU is a one-to-one correspondence.
Choose a coordinate covering {U1, U2, · · · } of M , with corresponding

maps {φ1, φ2, · · · }. Let the set of images of all open subsets of Ui × V r
s

under the map φi be a topological basis for T r
s . Such a topology makes T r

s

into a Hausdorff space with a countable basis, and each map φi is then a
homeomorphism.

Fix a point p ∈ U . The map φU,p : V
r
s → T r

s (p) defined by

φU,p(y) = φU (p, y), y ∈ V r
s

is a linear isomorphism. If W is another coordinate neighborhood of M
containing p, let

gUW (p) = φ−1
W,p ◦ φU,p : V

r
s → V r

s .

Then obviously gUW (p) ∈ GL(V r
s ). Therefore, for any two coordinate neigh-

borhoods U,W of M with U ∩W ̸= ∅, the map

gUW : U ∩W → GL(V r
s )

is well-defined. Moreover, it can be shown that gUW is actually some tensor
products of the Jacobian matrix of the change of local coordinates, thus
gUW is smooth on U ∩W .
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Now we construct the smooth structure of T r
s . First,

{φ1(U1 × V r
s ), φ2(U2 × V r

s ), · · · }

forms an open covering of T r
s . The coordinates of a point φi(p, y) in the

coordinate neighborhood φi(Ui × V r
s ) are

(uαi (p), y
i1···ir
j1···js),

where uαi is a local coordinate in the coordinate neighborhood Ui of the
manifold M , and yi1···irj1···js is the component of y ∈ V r

s with respect to the

basis ei1 ⊗ · · · eir ⊗ e∗j1 ⊗ · · · e∗js of V r
s . Noting that for Ui ∩ Uj ̸= ∅,

gij : Ui ∩ Uj → GL(V r
s ) is smooth, we see that the coordinate covering of

T r
s given above is C∞-compatible. Thus T r

s becomes a smooth manifold.
Obviously, the natural projection

π : T r
s →M,

which maps each element in T r
s (p) to the point p ∈M , is a smooth surjection.

The smooth manifold T r
s is called a type (r, s)-tensor bundle on M , π is

called the bundle projection, and T r
s (p) is called the fiber of the bundle

T r
s at p.
Letting r = 1, s = 0, we get the tangent bundle of M , denoted by

T (M). Letting r = 0, s = 1, we get the cotangent bundle of M , denoted
by T ∗(M). Replacing T r(p) by Λr(Tp) and V

r by Λr(V ), and following the
above procedure, we can construct exterior vector bundles

Λr(M) =
⋃
p∈M

Λr(Tp)

on M . Similarly, we can also construct exterior form bundles

Λr(M∗) =
⋃
p∈M

Λr(T ∗
p )

on M .
Suppose f : M → T r

s is a smooth map such that π ◦ f = idM , i.e.,
f(p) ∈ T r

s (p) for any p ∈ M , then f is called a smooth section of the
tensor bundle T r

s , or a type (r, s)-smooth tensor field on M . A section
of a tangent bundle is a tangent vector field on M , and a section of a
cotangent bundle is a differential 1-form. A smooth section of the exterior
form bundle Λr(M∗) is called an exterior differential form of degree r
on M .
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Definition 2.1.1 Suppose E,M are two smooth manifolds, and π : E →
M is a smooth surjection. Let V be a q-dimensional vector space. If an
open covering {U1, U2, · · · } of M and a set of maps {φ1, φ2, · · · } satisfy the
following conditions:

1. Every map φi is a diffeomorphism from Ui × V to π−1(Ui), and for
any p ∈ Ui, y ∈ V ,

π ◦ φi(p, y) = p.

2. For any fixed p ∈ Ui, let

φi,p(y) = φi(p, y), y ∈ V.

Then φi,p : V → π−1(p) is a homeomorphism. When Ui ∩ Uj ̸= ∅, for
any p ∈ Ui ∩ Uj ,

gij(p) = φ−1
j,p ◦ φi,p : V → V

is a linear automorphism of V , i.e. gij(p) ∈ GL(V ).

3. When Ui ∩ Uj ̸= ∅, the map gij : Ui ∩ Uj → GL(V ) is smooth.

then (E,M, π) is called a (real) q-dimensional vector bundle on M , where
E is called the bundle space, M is called the base space, π is called the
bundle projection, and V is called the typical fiber.

For any p ∈ M , define Ep = π−1(p) and call it the fiber of the vector
bundle E at the point p. For a coordinate neighborhood Ui of M contain-
ing p, the linear structure of the typical fiber V can be transported to Ep

through the map φi,p. Condition 2 ensures that the linear structure of Ep

is independent of the choice of Ui and φi.
The product manifold M × V is the most simple example of a vector

bundle, called the trivial bundle over M , or the product bundle.
The map gij : Ui ∩ Uj → GL(V ) satisfies the following compatibility

conditions:

1. for p ∈ Ui, gii(p) = idV ;

2. if p ∈ Ui ∩ Uj ∩ Uk ̸= ∅, then gki(p) ◦ gjk(p) ◦ gij(p) = idV .

The set {gij} is called the family of transition functions of the vector
bundle (E,M, π).
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Theorem 2.1.1 SupposeM is anm-dimensional smooth manifold, {Uα}α∈A
is an open covering of M , and V is a q-dimensional vector space. If for any
pair of indices α, β ∈ A where Uα ∩ Uβ ̸= ∅, there exists a smooth map
gαβ : Uα ∩ Uβ → GL(V ) that satisfies compatibility conditions, then there
exists a q-dimensional vector bundle (E,M, π) which has {gαβ} as its tran-
sition functions.

For a vector bundle (E,M, π) with V as its typical fiber, we can construct
another vector bundle (E∗,M, π̃) with V ∗ as its typical fiber, whose tran-
sition functions are the dual maps of the transition functions of (E,M, π).
The vector bundle E∗ is called the dual bundle of E. In fact, the cotangent
bundle is exactly the dual bundle of the tangent bundle. Similarly, we can
construct the direct sum and the tensor product of vector bundles.

Definition 2.1.2 Suppose s : M → E is a smooth map. If π ◦ s = idM ,
then s is called a smooth section of the vector bundle (E,M, π). The set
of all smooth sections of the vector bundle (E,M, π) is denoted by Γ(E).

Suppose s, s1, s2 ∈ Γ(E) and α ∈ C∞(M). For any p ∈M , let

(s1 + s2)(p) = s1(p) + s2(p),

(αs)(p) = α(p)s(p).

Then s1 + s2 and αs are also smooth sections of the vector bundle E. This
makes Γ(E) into a C∞(M)-module.

2.2 Exterior Differentiation

Suppose M is an m-dimensional smooth manifold. Let

Ar(M) = Γ(Λr(M∗))

be the space of the smooth sections of the exterior form bundle Λr(M∗).
The elements of Ar(M) are called exterior differential r-forms on M .
Similarly, let

A(M) = Γ(Λ(M∗))

be the space of all the smooth sections of the vector bundle Λ(M∗). The
elements of A(M) are called exterior differential forms onM . A(M) has
the expression as the direct sum

A(M) =

m∑
r=0

Ar(M).

13



The wedge product ∧ defines a map

∧ : Ar(M)×As(M) → Ar+s(M)

for each r, s which makes A(M) into a graded algebra.

Lemma 2.2.1 Suppose (U,φ) is a coordinate chart in a smooth manifold
M , V ̸= ∅ is an open set in M with V compact, and V ⊂ U . Then there
exists a smooth function h :M → R such that

1. 0 ≤ h ≤ 1;

2. h(p) =

®
1, p ∈ V ;

0, p ̸∈ U.

Theorem 2.2.2 Suppose M is an m-dimensional smooth manifold. Then
there exists a unique map

d : A(M) → A(M)

such that d(Ar(M)) ⊂ Ar+1(M) and such that it satisfies the following
properties:

1. For any ω1, ω2 ∈ A(M), d(ω1 + ω2) = dω1 + dω2.

2. Suppose ω1 ∈ Ar(M), then for any ω2 ∈ A(M),

d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)rω1 ∧ dω2.

3. If f is a smooth function on M , i.e. f ∈ A0(M), then df is precisely
the differential of f .

4. If f ∈ A0(M), then d(df) = 0.

The map d defined above is called the exterior derivative.

Proof. First we show that id the exterior operator d exists, then it is a local
operator. It suffices to show that ω|U = 0 implies (dω)|U = 0. Choose any
point p ∈ U . Then there is an open neighborhood W containing p such that
p ∈W ⊂W ⊂ U . By Lemma 2.2.1, there exists a smooth function h on M
such that

h(p′) =

®
1, p ∈W ;

0, p ̸∈ U.

14



Thus hω ∈ A(M) and hω = 0. Therefore

dh ∧ ω + hdω = 0,

and hence (dω)|W = 0. The arbitrarity of p then implies that the restriction
of dω in U must be zero.

Suppose ω is an exterior differential form defined on the open set U .
Using Lemma 2.2.1, for any point p ∈ U , there is a coordinate neighborhood
U1 ⊂ U of p and an exterior differential form ω̃ defined on M such that
ω̃|U1 = ω|U1 . Thus we can define dω̃|U1 = dω|U1 . Since d is a local operator,
the above definition is independent of the choice of ω̃. dω is therefore well-
defined.

Now we show the uniqueness of the exterior derivative d within a lo-
cal coordinate neighborhood. We only need to show this for a monomial.
Suppose in a coordinate neighborhood U , ω is expressed by

ω = adu1 ∧ · · · ∧ dur,

where a is a smooth function on U . By the properties of d, we see that

dω = da ∧ du1 ∧ · · · ∧ dur,

where da is the differential of the function a. Thus dω restricted to the
coordinate neighborhood U has a completely determined form.

Suppose
ω|U = ai1···irdu

i1 ∧ · · · ∧ duir .

Then we can define

d(ω|U ) = dai1···ir ∧ dui1 ∧ · · · ∧ duir .

Obviously, d(ω|U ) is an exterior differential (r + 1)-form on U satisfying
conditions 1 and 3. To show that 2 holds, we need only consider any two
monomials

α1 = adui1 ∧ · · · ∧ duir

α2 = bduj1 ∧ · · · ∧ dujr .

By the definition, we have

d(α1 ∧ α2) = d(ab) ∧ dui1 ∧ · · · ∧ duir ∧ duj1 ∧ · · · ∧ dujr

= (adb+ bda) ∧ dui1 ∧ · · · ∧ duir ∧ duj1 ∧ · · · ∧ dujr

= (da ∧ dui1 ∧ · · · ∧ duir) ∧ (bduj1 ∧ · · · ∧ dujr)

+ (−1)r(adui1 ∧ · · · ∧ duir) ∧ (db ∧ duj1 ∧ · · · ∧ dujr)

= dα1 ∧ α2 + (−1)rα1 ∧ dα2.
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Property 2 is therefore established.
We now prove condition 4. Suppose f is a smooth function on M . Then

on U it satisfies

df =
∂f

∂ui
dui.

Since f is C∞, its higher then first order partial derivatives are independent
of the order taken, i.e.,

∂2f

∂ui∂uj
=

∂2f

∂uj∂ui
.

Therefore

d(df) = d

Å
∂f

∂ui

ã
∧ dui

=
∂2f

∂ui∂uj
duj ∧ dui

=
1

2

Å
∂2f

∂ui∂uj
− ∂2f

∂uj∂ui

ã
duj ∧ dui

= 0.

IfW is another coordinate neighborhood, we obtain by the local property
of the exterior derivative operator and its uniqueness in a local coordinate
neighborhood that

(d(ω|U ))|U∩W = d(ω|U∩W ) = (d(ω|W ))|U∩W .

Hence the exterior derivative operator d is uniformly defined above on U∩W ,
i.e. d is an operator defined on M globally. This proves the existence of the
operator d satisfying the conditions of the theorem.

Theorem 2.2.3 (Poincare’s Lemma) For any exterior differential form
ω, d(dω) = 0.

Proof. Since d is a linear operator, we need only prove the lemma when ω
is a monomial. By the local properties of d, it suffices to assume that

ω = adu1 ∧ · · · ∧ dur.

Hence
dω = da ∧ du1 ∧ · · · dur.
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Differentiating one more time and applying conditions 2 and 4, we have

d(dω) = d(da) ∧ du1 ∧ · · · ∧ dur

− da ∧ d(du1) ∧ · · · ∧ dur + · · ·
= 0.

Suppose f : M → N is a smooth map from a smooth manifold M to
a smooth manifold N . Then f induces a tangent mapping f∗ : Tp(M) →
Tf(p)(N) at every point p ∈M . For ω ∈ A0(N), define

f∗ω = ω ◦ f ∈ A0(M).

For ω ∈ Ar(N), r ≥ 1, let f∗ω be an element of Ar(M) such that for any r
smooth tangent vector fields X1, X2, · · · , Xr on M ,

⟨X1 ∧X2 ∧ · · · ∧Xr, f
∗ω⟩p = ⟨f∗X1 ∧ f∗X2 ∧ · · · ∧ f∗Xr, ω⟩f(p), p ∈M,

where ⟨·, ·⟩ can be computed by≠
∂

∂ui1
∧ · · · ∧ ∂

∂uir
, duj1 ∧ · · · ∧ dujr

∑
p

= δj1···jri1···ir .

Under this definition, the map f∗ distributes over the wedge product, i.e.

f∗(ω ∧ η) = f∗ω ∧ f∗η, ω, η ∈ A(N).

Theorem 2.2.4 Suppose M,N are smooth manifold and f :M → N is a
smooth map. Then the following diagram commutes:

A(N) A(N)

A(M) A(M)

d

f∗ f∗

d

Proof. We can prove the equation f∗(dω) = d(f∗ω) for monomials ω by
induction on its degree.
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2.3 Integrals of Differential Forms

Definition 2.3.1 An m-dimensional smooth manifold M is called ori-
entable if there exists a continuous and nonvanishing exterior differential
m-form ω on M . If M is given such an ω, then M is said to be oriented.
If two such forms are given on M such that they differ by a function factor
which is always positive, then we say that they assign the same orientation
to M .

If ω, η are two exterior differential m-forms giving orientations to M ,
then there exists a nonvanishing continuous function f such that η = fω.
When M is connected, f retains the same sign on the whole M . Therefore
the orientation given by η is either identical to the one given by ω or the
one given by −ω. This implies that there exist exactly two orientations on
a connected orientable manifold.

Suppose M is oriented by the exterior differential form ω, and (U ;ui) is
any local coordinate system on M . Then du1 ∧ · · · ∧ dum and ω|U are the
same up to a nonzero factor. If the factor is positive, then (U ;ui) is said to
be a coordinate system consistent with the orientation of M .

Definition 2.3.2 Suppose f : M → R is a real function on M . The
support of f is the closure of the set of points at which f is nonzero, i.e.

supp f = {p ∈M | f(p) ̸= 0}.

If ϕ is an exterior differential form, the the support of ϕ is

suppϕ = {p ∈M | ϕ(p) ̸= 0}.

Definition 2.3.3 Suppose Σ0 is an open covering of M . If every compact
subset of M intersects only finitely many elements of Σ0, then Σ0 is called
a locally finite open covering of M .

Theorem 2.3.1 Suppose Σ is a topological basis of the manifoldM . Then
there is a subset Σ0 of Σ such that Σ0 is a locally finite open covering of M .

Proof. The second countability of M suggests that there exists a countable
open covering {Ui} of M such that the closure U i of every Ui is compact.
Let

Pi =
i⋃

r=1

U r, i = 1, 2, · · · ,

18



then Pi is compact, Pi ⊂ Pi+1 and

∞⋃
i=1

Pi =M.

Now we inductively construct another sequence of compact sets Qi satisfying
Pi ⊂ Qi ⊂ Q̊i+1 for each i. Let Q0 = ∅. Assuming that Q0, · · · , Qi−1 have
been constructed, we are going to construct Qi. Since Qi−1 ∪Pi is compact,
there exist finitely many elements Uα, 1 ≤ α ≤ s of {Ui} such that

Qi−1 ∪ Pi ⊂
s⋃

α=1

Uα.

Let

Qi =
s⋃

α=1

Uα,

then Qi satisfies Pi−1 ⊂ Qi−1 ⊂ Q̊i and Pi ⊂ Qi. Obviously we also have

∞⋃
i=1

Qi =M.

Denote Q−1 = ∅ and let

Li = Qi − Q̊i−1, Ki = Q̊i+1 −Qi−2

for each positive integer i. Then Li is compact, Ki is open, and Li ⊂ Ki.
Since Σ is a topological basis of M , Ki can be expressed as a union of
elements of Σ. These elements form an open covering of Li, and hence there
exist finitely many elements Vi,α, 1 ≤ α ≤ ri in Σ such that

Li ⊂
ri⋃

α=1

Vi,α ⊂ Ki

for each i. Because
∞⋃
i=1

Li =
∞⋃
i=1

Qi =M,

we see that
Σ0 = {Vi,α, 1 ≤ α ≤ ri, i ≥ 1}

is a subcovering of Σ.
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To show the local finiteness, we consider an arbitrary compact set A.
There exists a sufficiently large integer i such that A ⊂ Pi ⊂ Qi. For
j ≥ i+ 2,

Kj = Q̊j+1 −Qj−2 ⊂ Q̊j+1 −Qi,

thus
A ∩ Vj,α ⊂ Qi ∩Kj = ∅, 1 ≤ α ≤ rj .

Therefore only finitely many elements of Σ0 intersect A.

Theorem 2.3.2 (Partition of Unity Theorem) Suppose Σ is an open
covering of a smooth manifold M . Then there exists a family of smooth
functions {gα} on M satisfying the following conditions:

1. 0 ≤ gα ≤ 1, and supp gα is compact for each α. Moreover, there exists
an open set Wi ⊂ Σ such that supp gα ⊂Wi;

2. For each point p ∈ M , there is a neighborhood U of p that intersects
supp gα for only finitely many α;

3.
∑

α gα = 1.

The family {gα} is called a partition of unity subordinate to the open
covering Σ.

Proof. BecauseM is a manifold, there is a topological basis Σ0 = {Uα} such
that each Uα is a coordinate neighborhood, Uα is compact, and there exists
Wi ∈ Σ such that Uα ⊂ Wi. By Theorem 2.3.1, we may assume that Σ0

itself is a locally finite open covering of M with countably many elements.
For each Uα, we construct Vα by a contraction of Uα such that V α ⊂ Uα

and {Vα} is also an open covering for M . Let

Wα =
⋃
i ̸=α

Ui.

ThenM−Wα is a closed set contained in Uα and hence Uα. The compactness
of Uα implies that M −Wα is also compact. Thus there are finitely many
coordinate neighborhoods Wα,s, 1 ≤ s ≤ rα such that Wα,s ⊂ Uα and

M −Wα ⊂
rα⋃
s=1

Wα,s.

Now let

Vα =

rα⋃
s=1

Wα,s,
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then the Vα are as desired.
By Lemma 2.2.1, there exist smooth functions hα with 0 ≤ hα ≤ 1 on

M such that

hα(p) =

®
1, p ∈ Vα;

0, p ̸∈ Uα.

Then supphα ⊂ Uα. For any point p ∈ M , there exists a neighborhood U
such that U is compact. The local finiteness of Σ0 implies that U intersects
only finitely many elements of Σ0, and there are only finitely many nonzero
terms in the summation

∑
α hα(p). Thus h =

∑
α hα defines a smooth func-

tion on M . Since {Vα} covers M , any point p ∈M must lie in some Vα, and
thus h(p) ≥ hα(p) = 1. Let gα = hα/h, then the family {gα} satisfies all the
conditions of the theorem.

Suppose M is an m-dimensional smooth manifold, and φ is an exterior
differential m-form on M with a compact support. Choose any coordinate
covering Σ = {Wi} which is consistent with the orientation of M , and
suppose that {gα} is a partition of unity subordinate to Σ. Then φ =∑

α(gα · φ) and supp (gα · φ) is contained in some coordinate neighborhood
Wi ∈ Σ. Suppose u1, · · · , um is a coordinate system of Wi, with respect to
which gα · φ has the expression as

f(u1, · · · , um)du1 ∧ · · · ∧ dum.

The integral of gα · φ is then defined to be∫
M
gα · φ =

∫
Wi

gα · φ =

∫
Wi

f(u1, · · · , um)du1 · · · dum,

where the right hand side is the usual Riemann integral.
We need to show that the right hand side is independent of the choice of

the coordinate system (Wi;u
1, · · · , um). Suppose supp (gα · φ) ⊂ Wi ∩Wj ,

where Wi,Wj have the local coordinates uk, vk consistent with the orienta-
tion of M , respectively. The the Jacobian satisfies

J =
∂(v1, · · · , vm)

∂(u1, · · · , um)
> 0.

Suppose gα · φ is expressed in Wi and Wj , respectively, by

gα · φ = fdu1 ∧ · · · ∧ dum

= f̃dv1 ∧ · · · ∧ dvm.
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Then we have
f = f̃ · J = f̃ · |J |,

and supp f = supp f̃ = supp (gα · φ) ⊂Wi ∩Wj . Therefore∫
Wj

f̃dv1 · · · dvm =

∫
Wi∩Wj

f̃dv1 · · · dvm

=

∫
Wi∩Wj

f̃ · |J |du1 · · · dum

=

∫
Wi∩Wj

fdu1 · · · dum

=

∫
Wi

fdu1 · · · dum,

i.e. the integral of gα · φ on M is well-defined.
Since suppφ is compact, it only intersects finitely many supp gα. Let∫

M
φ =

∑
α

∫
M
gα · φ.

Now we show that the right hand side is independent of the choice of the par-
tition of unity {gα}. Suppose {g̃β} is another partition of unity subordinate
to Σ. Then ∑

β

∫
M
g̃β · φ =

∑
α,β

∫
M
gα · g̃β · φ

=
∑
α

∫
M

∑
β

g̃β · gα · φ

=
∑
α

∫
M
gα · φ.

In conclusion, the value of ∫
M
φ

is well-defined, and is called the integral of the exterior differential form φ
on M .

If φ is an exterior differential r-form, r < m, with compact support, then
we can define the integral of φ on any r-dimensional submanifold N of M .
Suppose h : N →M is an r-dimensional imbedding of N into M . Then h∗φ
is an exterior differential r-form on the r-dimensional smooth manifold N
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with compact support. The integral of φ on the submanifold h(N) of M is
then defined as ∫

h(N)
φ =

∫
N
h∗φ.

2.4 Stokes’ Formula

Definition 2.4.1 Suppose M is an m-dimensional smooth manifold. A
region D with boundary is a subset of M with two kinds of points:

1. Interior points, each of which has a neighborhood in M contained in
D.

2. Boundary points, for each of which there is a coordinate system (U ;ui)
such that ui(p) = 0 and

U ∩D = {q ∈ U | um(q) ≥ 0}.

A coordinate system ui with the above property is called an adapted co-
ordinate system for the boundary point p. The set B of all the boundary
points of D is called the boundary of D.

Theorem 2.4.1 The boundary B of a region D is a regular imbedded
closed submanifold. Furthermore, if M is orientable, then B is also ori-
entable.

Proof. The boundary B of the region D is a closed subset of M . Suppose
(U ;ui) is an adapted coordinate neighborhood, then

U ∩B = {q ∈ U | um(q) = 0}.

Thus B is a regular imbedded closed submanifold of M .
Now supposeM is an orientable manifold. Choose an adapted coordinate

neighborhood (U ;ui) which is consistent with the orientation of M at an
arbitrary point p ∈ B. Then (u1, · · · , um−1) is a local coordinate system of
B at the point p. Let

(−1)mdu1 ∧ · · · ∧ dum−1

specify the orientation of the boundary B in the coordinate neighborhood
U ∩B of the point p.
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Suppose (V ; vi) is another adapted coordinate neighborhood of the bound-
ary point p consistent with the orietation of M . Then

∂(v1, · · · , vm)

∂(u1, · · · , um)
> 0.

Moreover, the sign of vm is the same as that of um, and vm = 0 holds
whenever um = 0. This means that

∂vm

∂ui

∣∣∣∣
q

= 0, 1 ≤ i ≤ m− 1,

and that
∂vm

∂um

∣∣∣∣
q

> 0

for any q ∈ U ∩ V ∩B. Therefore

∂(v1, · · · , vm−1)

∂(u1, · · · , um−1)
> 0

holds within U ∩ V ∩ B. This shows that (−1)mdu1 ∧ · · · ∧ dum−1 and
(−1)mdv1∧· · ·∧dvm−1 give consistent orientations in U ∩V ∩B. Therefore,
the orientation given by (−1)mdu1 ∧ · · · ∧ dum−1 in U ∩B can be extended
to the whole boundary B. Hence B is orientable.

The orientation of B given in the proof is called the induced orien-
tation on the boundary B by an oriented manifold M . If D has the same
orientation as M , we denote the boundary B with the induced orientation
by ∂D.

Theorem 2.4.2 (Stokes’ Formula) Suppose D is a region with bound-
ary in an m-dimensional oriented manifold M , and ω is an exterior differ-
ential (m− 1)-form on M with compact support. Then∫

D
dω =

∫
∂D

ω.

If ∂D = ∅, then the integral on the right hand side is zero.

Proof. Suppose {Ui} is a coordinate covering consistent with the orientation
of M , and {gα} is a subordinate partition of unity. Then

ω =
∑
α

gα · ω.
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The right hand side is a sum of finitely many terms since suppω is compact.
Therefore ∫

D
dω =

∑
α

∫
D
d(gα · ω),

and ∫
∂D

ω =
∑
α

∫
∂D

gα · ω.

Thus we may assume that suppω is contained in a coordinate neighborhood
(U ;ui) consistent with the orientation of M .

Suppose ω can be expressed as

ω =
m∑
j=1

(−1)j−1ajdu
1 ∧ · · · ∧”dui ∧ · · · ∧ dum,

where the aj are smooth functions on U . Then

dω =

Ñ
m∑
j=1

∂aj
∂uj

é
du1 ∧ · · · ∧ dum.

Case 1: If U ∩ ∂D = ∅, then∫
∂D

ω = 0.

Then either U ⊂ M − D or U is contained in the interior of D. We only
need to consider the latter one. Consider a cube

C = {u ∈ Rm | |ui| ≤ K, 1 ≤ i ≤ m}

such that the image of U under coordinate maps is contained in the interior
of C. The functions aj can be smoothly extended to C by letting them be
zero outside U . Noting that∫ K

−K

∂aj
∂uj

duj = aj(u
1, · · · , uj−1,K, uj+1, · · · , um)

− aj(u
1, · · · , uj−1,−K,uj+1, · · · , um)

= 0,
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we have∫
U

∂aj
∂uj

du1 · · · dum =

∫
C

∂aj
∂uj

du1 · · · dum

=

∫
|ui|≤K,i̸=j

Ç∫ K

−K

∂aj
∂uj

duj
å
du1 · · · d̂uj · · · dum

= 0

for each j, and hence∫
D
dω =

∫
U

Ñ
m∑
j=1

∂aj
∂uj

é
du1 · · · dum = 0.

Case 2: If U ∩∂D ̸= ∅, we may assume that U is an adapted coordinate
neighborhood consistent with the orientation of M . Then

U ∩D = {q ∈ U | um(q) ≥ 0}

and
U ∩ ∂D = {q ∈ U | um(q) = 0}.

Consider the cube

C = {u ∈ Rm | um ≥ 0, |ui| ≤ K, 1 ≤ i ≤ m}

such that the image of U ∩ D under coordinate maps is contained in the
union of the interior of C and the boundary um = 0. Noting that dum = 0
on U ∩ ∂D, we have∫

∂D
ω =

∫
U∩∂D

ω

=

m∑
j=1

(−1)j−1

∫
U∩∂D

ajdu
1 ∧ · · · ∧”dui ∧ · · · ∧ dum

= (−1)m−1

∫
U∩∂D

amdu1 ∧ · · · ∧ dum−1

= −
∫
|ui|≥K,1≤i<m

am(u1, · · · , um−1, 0)du1 · · · dum−1.

On the other hand, since∫
U∩D

∂aj
∂uj

du1 ∧ · · · ∧ dum =

∫
|ui|≤K,i<m,i̸=j

0≤um≤K

Ç∫ K

−K

∂aj
∂uj

duj
å
du1 · · · d̂uj · · · dum

= 0
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for 1 ≤ j ≤ m− 1, we have∫
D
dω =

∫
U∩D

dω

=
m∑
j=1

∫
U∩D

∂aj
∂uj

du1 ∧ · · · ∧ dum

=

∫
U∩D

∂am
∂um

du1 ∧ · · · ∧ dum

=

∫
|ui|≥K,1≤i<m

Ç∫ K

0

∂am
∂um

dum
å
du1 · · · dum−1

=

∫
|ui|≥K,1≤i<m

[am(u1, · · · , um−1,K)− am(u1, · · · , um−1, 0)]du1 · · · dum−1

= −
∫
|ui|≥K,1≤i<m

am(u1, · · · , um−1, 0)du1 · · · dum−1.

In conclusion, we have ∫
D
dω =

∫
∂D

ω,

and the theorem is proved.

We can view Ar(M) as a cochain group with d : Ar(M) → Ar+1(M)
being the coboundary operator. Denote

Zr(M,R) = {ω ∈ Ar(M) | dω = 0}

and
Br(M,R) = {ω ∈ Ar(M) | ω = dη for some η ∈ Ar−1(M)}.

The elements of Zr(M,R) are called closed differential forms and the ele-
ments of Br(M,R) are called exact differential forms. Poincare’s Lemma
thus implies that Br(M,R) ⊂ Zr(M,R).

Definition 2.4.2 The quotient space

Hr(M,R) = Zr(M,R)/Br(M,R)

is called the r-th de Rham cohomology group of M .
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Any smooth map f :M → N induces a homomorphism

f∗ : Ar(N) → Ar(M)

which commutes with the coboundary operator d. Such a map f∗ is called
a chain map. It can be easily proved that f∗ provides a homomorphism
from Zr(N,R) to Zr(M,R) and that from Br(N,R) to Br(M,R). Hence f∗
induces a homomorphism between the de Rham groups

f∗ : Hr(N,R) → Hr(M,R).

3 Connections

3.1 Connections on Vector Bundles

Definition 3.1.1 A connection on a vector bundle E is a map

D : Γ(E) → Γ(T ∗(M)⊗ E)

which satisfies the following conditions:

1. For any s1, s2 ∈ Γ(E), D(s1 + s2) = Ds1 +Ds2.

2. For s ∈ Γ(E) and any α ∈ C∞(M), D(αs) = dα⊗ s+ αDs.

Suppose X is a smooth tangent vector field on M and s ∈ Γ(E). Let

DXs = ⟨X,Ds⟩,

then DXs is a section on E, called the absolute differential quotient or
the covariant derivative of the section s along X.

Condition 2 for connections implies that D(λs) = λDs for any λ ∈ R,
hence D is a linear map from Γ(E) to Γ(T ∗(M)⊗ E). The operator D also
has the local property that if the restriction of a section s to an open set
U ⊂ M is zero, then Ds|U = 0. By the definition of absolute differential
quotient, it can be shown that for any smooth tangent vector fields X,Y on
M , sections s, s1, s2 of E, and α ∈ C∞(M), we have

1. DX+Y s = DXs+DY s;

2. DαXs = αDXs;

3. DX(s1 + s2) = DXs1 +DXs2;
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4. DX(αs) = (Xα)s+ αDXs.

Suppose U is a coordinate neighborhood of M with local coordinates
ui, 1 ≤ i ≤ m. Choose q smooth sections sα, 1 ≤ α ≤ q of E on U such that
they are linearly independent everywhere. Such a set of sections is called a
local frame field of E on U . At every point p ∈ U ,

{dui ⊗ sα, 1 ≤ i ≤ m, 1 ≤ α ≤ q}

forms a basis for the tensor space T ∗
p ⊗ Ep. Since Dsα is a local section on

U of the bundle T ∗(M)⊗ E, we can write

Dsα = Γβ
αidu

i ⊗ sβ,

where Γβ
αi are smooth functions on U and the Einstein summation conven-

tion is adopted for the indices i and β. Denote

ωβ
α = Γβ

αidu
i,

then we have
Dsα = ωβ

α ⊗ sβ.

Let S = (s1, · · · , sq)T and ω = (ωβ
α), then the above equation can be written

as
DS = ω ⊗ S.

The matrix ω is called the connection matrix, which depends on the choice
of the local frame field S.

If S′ = (s′1, · · · , s′q)T is another local frame field on U , then we may
assume that

S′ = A · S,

or equivalently,
s′i = ajisj ,

where A = (aji ) is a nondegenerate matrix of smooth functions. Suppose
the matrix of the connection D with respect to the local frame field S′ is ω′.
Then we have

DS′ = D(A · S)
= dA⊗ S +A ·DS
= (dA+A · ω)⊗ S

= (dA ·A−1 +A · ω ·A−1)⊗ S′.
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It follows that
ω′ = dA ·A−1 +A · ω ·A−1,

or equivalently,
ω′ ·A = dA+A · ω.

Conversely, suppose a coordinate covering {Ui} is chosen for M . On
each Ui fix a local frame field Si of E and assign a q × q matrix ωi of
differential 1-forms which satisfies the transformation formula above when
the corresponding coordinate neighborhoods intersect. Then there exists a
connection D on E whose matrix representation on each member Ui of the
coordinate covering is exactly ωi.

Theorem 3.1.1 A connection always exists on a vector bundle.

Proof. Choose a coordinate covering {Uα}α∈A of M . We may assume that
there is a local frame field Sα for any Uα. We need only construct a q × q
matrix ωα on each Uα such that the matrices constructed satisfy the trans-
formation formula under a change of local frame field.

By Theorem 2.3.1 and the Partition of Unity Theorem, we may assume
that {Uα} is locally finite and {gα} is a corresponding subordinate partition
of unity such that supp gα ⊂ Uα. When Uα ∩Uβ ̸= ∅, there naturally exists
a nondegenerate matrix Aαβ of smooth functions on Uα ∩ Uβ such that

Sα = Aαβ · Sβ.

For every α ∈ A choose an arbitrary q × q matrix φα of differential 1-forms
on Uα. Let

ωα =
∑

Uα∩Uβ ̸=∅

gβ · (dAαβ ·A−1
αβ +Aαβ · φβ ·A−1

αβ)

be another matrix of differential 1-forms on Uα. When Uα ∩ Uβ ∩ Uγ ̸= ∅,
we have

Aαβ ·Aβγ = Aαγ

in the intersection. Thus on Uα ∩ Uβ ̸= ∅, we have

Aαβ · ωβ ·A−1
αβ =

∑
Uα∩Uβ∩Uγ ̸=∅

gγ ·Aαβ · (dAβγ ·A−1
βγ +Aβγ · φγ ·A−1

βγ ) ·A
−1
αβ

=
∑

Uα∩Uβ∩Uγ ̸=∅

gγ · (dAαγ − dAαβ ·Aβγ +Aαγ · φγ) ·A−1
βγ ·A−1

αβ

= ωα − dAαβ ·A−1
αβ .

This is precisely the transformation formula.
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Theorem 3.1.2 Suppose D is a connection on a vector bundle E and
p ∈M . Then there exists a local frame field S in a coordinate neighborhood
of p such that the corresponding connection matrix ω is zero at p.

Proof. Choose a coordinate neighborhood (U ;ui) of p such that ui(p) =
0, 1 ≤ i ≤ m. Suppose S′ is a local frame field on U with corresponding
connection matrix ω′ = (ω′β

α ), where ω′β
α = Γ′β

αidu
i, and the Γβ

αi are smooth
functions on U . Let

aβα = δβα − Γ′β
αi(p) · u

i.

Then A = (aβα) is the identity matrix at p. Hence there exists a neighborhood
V ⊂ U of p such that A is nondegenerate in V . Thus

S = A · S′

is a local frame field on V . Noting that

daβα = −Γ′β
αi(p) · du

i,

we have
dA(p) = −ω′(p),

and hence

ω(p) = dA(p) ·A−1(p) +A(p) · ω′(p) ·A−1(p) = dA(p) + ω′(p) = 0.

Exteriorly differentiating the formula

ω′ ·A = dA+A · ω

once, we obtain

dω′ ·A− ω′ ∧ dA = A · dω + dA ∧ ω.

Using the formula
dA = ω′ ·A−A · ω,

we then have
(dω′ − ω′ ∧ ω′) ·A = A · (dω − ω ∧ ω).

If we let
Ω = dω − ω ∧ ω,

then the above equation can be written as

Ω′ = A · Ω ·A−1.
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Definition 3.1.2 The matrix Ω = dω − ω ∧ ω of differential 2-forms is
called the curvature matrix of the connection D on U .

Choose any two tangent vectors Xp, Yp ∈ Tp(M), p ∈ U . Suppose sp ∈
Ep. Using the local frame field SU = (s1, · · · , sq)T of the vector bundle E
on U , sp can be expressed as

sp = λαsα|p.

Then let
R(Xp, Yp)sp = λα⟨Xp ∧ Yp,Ωβ

α|p⟩sβ|p.

Noting that ⟨Xp ∧ Yp,Ω
β
α|p⟩ is actually a (1, 1)-type tensor on the linear

space Ep, R(Xp, Yp) is a linear transformation on Ep that is independent of
the choice of local coordinates.

If X,Y are two smooth tangent vector fields on M , then R(X,Y ) is a
linear operator on Γ(E) given by

(R(X,Y )s)p = R(Xp, Yp)sp

for each s ∈ Γ(E), p ∈M . R(X,Y ) has the following properties:

1. R(X,Y ) = −R(Y,X);

2. R(fX, Y ) = f ·R(X,Y );

3. R(X,Y )(fs) = f ·R(X,Y )s,

where X,Y ∈ Γ(T (M)), f ∈ C∞(M), s ∈ Γ(E). R(X,Y ) is called the
curvature operator of the connection D.

Lemma 3.1.3 Suppose ω is a differential 1-form on a smooth manifold M
and X,Y are smooth tangent vector fields on M . Then

⟨X ∧ Y,dω⟩ = X⟨Y, ω⟩ − Y ⟨X,ω⟩ − ⟨[X,Y ], ω⟩.

Proof. Since both sides are linear with respect to ω, we may assume that ω
is a monomial

ω = gdf,

where f, g are smooth functions on M . Therefore

dω = dg ∧ df.
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The left hand side then becomes

⟨X ∧Y,dω⟩ = ⟨X ∧Y,dg∧df⟩ =
∣∣∣∣ ⟨X,dg⟩ ⟨X,df⟩
⟨Y,dg⟩ ⟨Y,df⟩

∣∣∣∣ = Xg ·Y f −Xf ·Y g.

Since
⟨X,ω⟩ = ⟨X, gdf⟩ = g ·Xf,

we have
Y ⟨X,ω⟩ = Y g ·Xf + g · Y (Xf).

Similarly,
X⟨Y, ω⟩ = Xg · Y f + g ·X(Y f).

Therefore the right hand side is also

X⟨Y, ω⟩ − Y ⟨X,ω⟩ − ⟨[X,Y ], ω⟩
= Xg · Y f − Y g ·Xf + g · (X(Y f)− Y (Xf))− g · ⟨[X,Y ],df⟩
= Xg · Y f −Xf · Y g.

Theorem 3.1.4 Suppose X,Y are two arbitrary smooth tangent vector
fields on the smooth manifold M . Then

R(X,Y ) = DXDY −DY DX −D[X,Y ].

Proof. We need only consider the operators of both sides on a local section.
Suppose s ∈ Γ(E) has the local expression

s = λαsα.

Then
DXs = (Xλα)sα + λαDXsα =

Ä
Xλα + λβ

〈
X,ωα

β

〉ä
sα.

Hence

DY DXs =
î
Y (Xλα + λβ

〈
X,ωα

β

〉
) + (Xλβ + λγ

¨
X,ωβ

γ

∂
) ·
〈
Y, ωα

β

〉ó
sα

=
î
Y (Xλα) + Y λβ ·

〈
X,ωα

β

〉
+ λβ · Y

〈
X,ωα

β

〉
+Xλβ ·

〈
Y, ωα

β

〉
+ λβ

¨
X,ωγ

β

∂ 〈
Y, ωα

γ

〉ó
sα.

It follows that

(DXDY −DY DX)s =
î
[X,Y ]λα + λβ

(
X
〈
Y, ωα

β

〉
− Y

〈
X,ωα

β

〉
+
¨
Y, ωγ

β

∂ 〈
X,ωα

γ

〉
−
¨
X,ωγ

β

∂ 〈
Y, ωα

γ

〉äó
sα.
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By Lemma 3.1.3, we have

X
〈
Y, ωα

β

〉
− Y

〈
X,ωα

β

〉
=
〈
X ∧ Y, dωα

β

〉
+
〈
[X,Y ], ωα

β

〉
.

Together with¨
X ∧ Y, ωγ

β ∧ ωα
γ

∂
=
¨
Y, ωγ

β

∂ 〈
X,ωα

γ

〉
−
¨
X,ωγ

β

∂ 〈
Y, ωα

γ

〉
,

we further obtain

(DXDY −DY DX)s =
î
[X,Y ]λα + λβ

(〈
[X,Y ], ωα

β

〉
+
¨
X ∧ Y, dωα

β − ωg
β ∧ ωα

γ

∂äó
sα

= D[X,Y ]s+ λβ
〈
X ∧ Y,Ωα

β

〉
sα

=
(
D[X,Y ] +R(X,Y )

)
s.

That is
R(X,Y ) = DXDY −DY DX −D[X,Y ].

Theorem 3.1.5 The curvature matrix Ω satisfies the Bianchi identity

dΩ = ω ∧ Ω− Ω ∧ ω.

Proof. Applying exterior differentiation to both sides of

Ω = dω − ω ∧ ω,

we obtain

dΩ = −dω ∧ ω + ω ∧ dω

= −(Ω + ω ∧ ω) ∧ ω + ω ∧ (Ω + ω ∧ ω)
= ω ∧ Ω− Ω ∧ ω.

Definition 3.1.3 Suppose C is a parametrized curve in M , and X is a
tangent vector field along C. If a section s of the vector bundle E on C
satisfies DXs = 0, then we say s is parallel along the curve C.
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Suppose the curve C is given in a local coordinate neighborhood U of
M by

ui = ui(t), 1 ≤ i ≤ m.

Then the tangent vector field of C is

X =
dui

dt

∂

∂ui
.

Let S be a local frame field on U . Then

s = λαsα

is a parallel section along C if and only if it satisfies the system of equations

DXs =

Ç
dλα

dt
+ Γα

βi

dui

dt
λβ
å
sα = 0,

or equivalently,
dλα

dt
+ Γα

βi

dui

dt
λβ = 0, 1 ≤ α ≤ q.

By the Fundamental Theorem of Ordinary Differential Equations, there ex-
ists a unique solution for any given initial values. Thus if any vector v ∈ Ep

is given at a point p on C, then it determines uniquely a vector field parallel
along C, which is called the parallel displacement of v along C.

A connection D of the vector bundle E induces a connection on the dual
bundle E∗ given by the equation

d⟨s, s∗⟩ = ⟨Ds, s∗⟩+ ⟨s,Ds∗⟩

for any s ∈ Γ(E), s∗ ∈ Γ(E∗). Suppose connections D are separately given
on the vector bundles E1 and E2, then the equations

D(s1 ⊕ s2) = Ds1 ⊕Ds2

D(s1 ⊗ s2) = Ds1 ⊗Ds2

determine connections on E1 ⊕ E2 and E1 ⊗ E2, respectively. These are
called the induced connections on E∗, E1⊕E2 and E1⊗E2, respectively.
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3.2 Affine Connections

A connection on the tangent bundle T (M) is called an affine connection
on the m-dimensional smooth manifold M . A manifold with a given affine
connection is called an affine connection space.

Suppose M is an m-dimensional affine connection space with a given
affine connection D. Choose any coordinate system (U ;ui) of M . Then
the natural basis {si = ∂/∂ui, 1 ≤ i ≤ m} forms a local frame field of the
tangent bundle T (M) on U . Thus we may assume that

Dsi = ωj
i ⊗ sj = Γj

ikdu
k ⊗ sj ,

where Γj
ik are smooth functions on U , called the coefficients of the connec-

tion D with respect to the local coordinates ui. Suppose (W ;wi) is another
coordinate system of M . Let s′i = ∂/∂wi, 1 ≤ i ≤ m. Then

S′ = JWU · S

holds on U ∩W ̸= ∅, where JWU = (∂uj/∂wi), S′ = (s′i)
T , S = (sj)

T . Then
we have

ω′ = dJWU · J−1
WU + JWU · ω · J−1

WU ,

or equivalently,

ω′j
i = d

Å
∂up

∂wi

ã
∂wj

∂up
+
∂up

∂wi

∂wj

∂uq
ωq
p.

Using the relations

ω′j
i = Γ′j

ikdw
k, ωq

p = Γq
prdu

r,

we obtain

Γ′j
ik = Γq

pr

∂wj

∂uq
∂up

∂wi

∂ur

∂wk
+

∂2up

∂wi∂wk

∂wj

∂up
.

This indicates that Γj
ik is not a tensor field on M .

Suppose X is a smooth vector field on M expressed in local coordinates
as

X = xi
∂

∂ui
.

Then

DX = (dxi + xjωi
j)⊗

∂

∂ui
= xi,jdu

j ⊗ ∂

∂ui
,

where

xi,j =
∂xi

∂uj
+ xkΓi

kj .
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DX is a tensor field of type (1, 1) on M , called the absolute differential
of X.

An affine connection on M induces connections on the cotangent bundle
T ∗(M) and the tensor bundle T r

s , respectively. Under coordinates ui, the
local coframe field of the cotangent bundle s∗i = dui, 1 ≤ i ≤ m. By the
definition of the induced connection on the dual bundle, we have

⟨sj ,Ds∗i⟩ = d⟨sj , s∗i⟩ − ⟨Dsj , s∗i⟩ = dδij − ωi
j = −ωi

j

for each i, j, hence

Ds∗i = −ωi
j ⊗ s∗j = −Γi

jkdu
k ⊗ duj .

If a cotangent vector field α on M is expressed in local coordinates as

α = αidu
i,

then
Dα = (dαi − αjω

j
i )⊗ dui = αi,jdu

j ⊗ dui,

where

αi,j =
∂αi

∂uj
− αkΓ

k
ij .

Dα is then a (0, 2)-type tensor field, called the absolute differential of
the cotangent vector field α. In general, if t is an (r, s)-type tensor field, the
the image of t under the induced connection D is an (r, s + 1)-type tensor
field Dt, called the absolute differential of t.

Definition 3.2.1 Suppose C : ui = ui(t) is a parametrized curve on M ,
and X(t) is a tangent vector field defined on C given by

X(t) = xi(t)

Å
∂

∂ui

ã
C(t)

.

We say that X(t) is parallel along C if its absolute differential along C is
zero, i.e. if

DX

dt
= 0.

If the tangent vectors of a curve C are parallel along C, then we call C a
self-parallel curve, or a geodesic.
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The equation DX/dt = 0 is equivalent to

dxi

dt
+ xjΓi

jk

duk

dt
= 0.

This is a system of first-order ordinary differential equations. Thus a given
tangent vector X at any point on C gives rise to a parallel tangent vector
field, called the parallel displacement of X along the curve C.

If C is a geodesic, then its tangent vector

X(t) =
dui(t)

dt

Å
∂

∂ui

ã
C(t)

is parallel along C. Therefore a geodesic curve C should satisfy

d2ui

dt2
+ Γi

jk

duj

dt

duk

dt
= 0.

This is a system of second-order ordinary differential equations. Thus there
exists a unique geodesic through a given point of M which is tangent to a
given tangent vector at that point.

Now consider the curvature matrix Ω of an affine connection. Since

ωj
i = Γj

ikdu
k,

we have

dωj
i − ωh

i ∧ ωj
h =

∂Γj
ik

∂ul
dul ∧ duk − Γh

ilΓ
j
hkdu

l ∧ duk

=
1

2

Ç
∂Γj

il

∂uk
−
∂Γj

ik

∂ul
+ Γh

ilΓ
j
hk − Γh

ikΓ
j
hl

å
duk ∧ dul.

Therefore

Ωj
i =

1

2
Rj

ikldu
k ∧ dul,

where

Rj
ikl =

∂Γj
il

∂uk
−
∂Γj

ik

∂ul
+ Γh

ilΓ
j
hk − Γh

ikΓ
j
hl.

If (W ;wi) is another coordinate system of M , then

Ω′ = JWU · Ω · J−1
WU ,
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where Ω′ is the curvature matrix of the connection D under the coordinate
system (W ;wi). Therefore

Ω′j
i = Ωq

p

∂up

∂wi

∂wj

∂uq
.

Thus

R′j
ikl = Rq

prs

∂up

∂wi

∂wj

∂uq
∂ur

∂wk

∂us

∂wl
,

where R′j
ikl is determined by

Ω′j
i =

1

2
R′j

ikldw
k ∧ dwl.

If we let

R = Rj
ikldu

i ⊗ ∂

∂uj
⊗ duk ⊗ dul,

then R is independent of the choice of local coordinates, and is called the
curvature tensor of the affine connection.

Suppose X,Y, Z are tangent vector field with local expressions

X = Xi ∂

∂ui
, Y = Y i ∂

∂ui
, Z = Zi ∂

∂ui
.

Then by the definition of the curvature operator, we have

R(X,Y )Z = Zi
¨
X ∧ Y,Ωj

i

∂ ∂

∂uj
= Rj

iklZ
iXkY l ∂

∂uj
.

Thus

Rj
ikl =

≠
R

Å
∂

∂uk
,
∂

∂ul

ã
∂

∂ui
, duj
∑
.

This is the relation between the curvature operator and the curvature tensor.
The connection coefficients Γj

ik does not satisfy the transformation rule

for tensors. But if we define T j
ik = Γk

ki − Γj
ik, then we have

T ′j
ik = T q

pr

∂wj

∂uq
∂up

∂wi

∂ur

∂wk

after the transformation formula for Γj
ik. Thus

T = T j
ik

∂

∂uj
⊗ dui ⊗ duk
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is a (1, 2)-type tensor, called the torsion tensor of the affine connection
D. T can also be viewed as a map from Γ(T (M))× Γ(T (M)) to Γ(T (M)).
Suppose X,Y are any two tangent vector field on M . Then T (X,Y ) is a
tangent vector field on M with local expression

T (X,Y ) = T k
ijX

iY j ∂

∂uk
.

It can be verified that

T (X,Y ) = DXY −DYX − [X,Y ].

Definition 3.2.2 If the torsion tensor of an affine connection D is zero,
then the connection is said to be torsion-free.

If the coefficients of a connection D are Γj
ik, then set

Γ̃j
ik =

1

2
(Γj

ik + Γj
ki).

The Γ̃j
ik can be the coefficients of some connection D̃ since they satisfy the

transformation formula for connection coefficients, and direct computation
suggests that D̃ is torsion-free. Therefore a torsion-free connection on a
vector bundle always exists. Noting that

Γj
ik = −1

2
T j
ik + Γ̃j

ik,

we have

DXZ =
1

2
T (X,Z) + D̃XZ.

This implies that any connection can be decomposed into a sum of a multi-
ple of its torsion tensor and a torsion-free connection. Moreover, since the
geodesic equation of the connection D is equivalent to

d2ui

dt2
+ Γ̃i

jk

duj

dt

duk

dt
= 0,

a connection D and the corresponding torsion-free connection D̃ have the
same geodesics.

Theorem 3.2.1 Suppose D is a torsion-free affine connection onM . Then
for any point p ∈M there exists a local coordinate system ui such that the
corresponding connection coefficients Γj

ik vanish at p.
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Proof. Suppose (W ;wi) is a local coordinate system at p with connection
coefficients Γ′j

ik. Let

ui = wi +
1

2
Γ′i
jk(p)(w

j − wj(p))(wk − wk(p)).

Then
∂ui

∂wj

∣∣∣∣
p

= δij ,
∂2ui

∂wj∂wk

∣∣∣∣
p

= Γ′i
jk(p).

Thus the matrix (∂ui/∂wj) is nondegenerate at p, and then the ui provide
a local coordinates in a neighborhood of p. Then the connection coefficients
Γj
ik in the new coordinate system ui satisfy

Γj
ik(p) = 0, 1 ≤ i, j, k ≤ m.

Theorem 3.2.2 Suppose D is a torsion-free affine connection onM . Then
we have the Bianchi identity

Rj
ikl,h +Rj

ilh,k +Rj
ihk,l = 0,

where Rj
ikl,h is determined by the absolute differential of the curvature tensor

R as

DR = Rj
ikl,hdu

h ⊗ dui ⊗ ∂

∂uj
⊗ duk ⊗ dul.

Proof. From Theorem 3.1.5 we have

dΩj
i = ωk

i ∧ Ωj
k − Ωk

i ∧ ω
j
k,

that is

∂Rj
ikl

∂uh
duh ∧ duk ∧ dul = (Γp

ihR
j
pkl − Γj

phR
p
ikl)du

h ∧ duk ∧ dul.

From

R = Rj
ikldu

i ⊗ ∂

∂uj
⊗ duk ⊗ dul,
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we obtain

DR

= dRj
ikl ⊗ dui ⊗ ∂

∂uj
⊗ duk ⊗ dul +Rj

iklD(dui)⊗ ∂

∂uj
⊗ duk ⊗ dul

+Rj
ikldu

i ⊗D

Å
∂

∂uj

ã
⊗ duk ⊗ dul +Rj

ikldu
i ⊗ ∂

∂uj
⊗D(duk)⊗ dul

+Rj
ikldu

i ⊗ ∂

∂uj
⊗ duk ⊗D(dul)

= (dRj
ikl −Rj

pklω
p
i +Rp

iklω
j
p −Rj

iplω
p
k −Rj

ikpω
p
l )⊗

∂

∂uj
⊗ dui ⊗ duk ⊗ dul,

and hence

Rj
ikl,h =

∂Rj
ikl

∂uh
− Γp

ihR
j
pkl + Γj

phR
p
ikl − Γp

khR
j
ipl − Γp

lhR
j
ikp.

Therefore

Rj
ikl,hdu

h ∧ duk ∧ dul

=

Ç
∂Rj

ikl

∂uh
+ Γj

phR
p
ikl − Γp

ihR
j
pkl − Γp

khR
j
ipl − Γp

lhR
j
ikp

å
duh ∧ duk ∧ dul

= −(Γp
khR

j
ipl + Γp

lhR
j
ikp)du

h ∧ duk ∧ dul.

The torsion-free property of the connection implies that

Γp
lhR

j
ikpdu

h∧duk∧dul = Γp
hkR

j
ilpdu

h∧duk∧dul = −Γp
khR

j
ipldu

h∧duk∧dul,

thus
Rj

ikl,hdu
h ∧ duk ∧ dul = 0.

Hence
(Rj

ikl,h +Rj
ilh,k +Rj

ihk,l)du
h ∧ duk ∧ dul = 0.

Since the coefficients are skew-symmetric with respect to h, k, l, we have

Rj
ikl,h +Rj

ilh,k +Rj
ihk,l = 0.
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3.3 Connections on Frame Bundles

Suppose M is an m-dimensional differentiable manifold. A frame refers
to a combination of the form (p; e1, · · · , em), where p is a point in M and
e1, · · · , em are m linearly independent tangent vectors at p. The set of all
frames on M is denoted by P . We now introduce a differentiable structure
on P so that it becomes a smooth manifold, and the natural projection

π(p; e1, · · · , em) = p

is a smooth map from P to M . (P,M, π) is then called the frame bundle
of M .

Suppose (U ;ui) is a coordinate neighborhood ofM . Then there is a nat-
ural frame field (∂/∂u1, · · · , ∂/∂um) on U . Hence any frame (p; e1, · · · , em)
on U can be written as

ei = Xk
i

Å
∂

∂uk

ã
p

, 1 ≤ i ≤ m,

where (Xk
i ) is a nondegenerate m×m matrix, and therefore an element of

GL(m;R). Thus we can define a map φU : U ×GL(m;R) → π−1(U) by

φU (p,X
k
i ) =

Ç
p;Xk

1

Å
∂

∂uk

ã
p

, · · · , Xk
m

Å
∂

∂uk

ã
p

å
for any p ∈ U, (Xk

i ) ∈ GL(m;R). We can see that φU is a one-to-one
correspondence.

Choose a coordinate covering {U1, U2, · · · } of M with corresponding
maps {φ1, φ2, · · · }. The images of all the open subsets of Ui × GL(m;R)
under the map φi form a topological basis for P . With respect to this
topological structure of P , the map φi : Ui × GL(m;R) → π−1(U) is a
homeomorphism.

Through the map φi, π
−1(Ui) becomes a coordinate neighborhood in P

with local coordinate system (ui, Xk
i ). Suppose U and W are coordinate

neighborhoods in M such that U ∩W ̸= ∅. Then M has the local change
of coordinates

wi = wi(u1, · · · , um), 1 ≤ i ≤ m

on the intersection U ∩W . The corresponding natural bases have the fol-
lowing relationship

∂

∂ui
=
∂wj

∂ui
∂

∂wj
.
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If (p; e1, · · · , em) is a frame on U ∩ W , then its coordinates (ui, Xk
i ) and

(wi, Y k
i ) under two coordinate systems satisfy

wi = wi(u1, · · · , um), 1 ≤ i ≤ m,

and

Y k
i = Xj

i

∂wk

∂uj
, 1 ≤ i, k ≤ m.

We can then see that the coordinate neighborhoods π−1(U) and π−1(W )
are C∞-compatible. Therefore P becomes an (m2+m)-dimensional smooth
manifold, and the natural projection π : P →M is a smooth surjection.

For any p ∈ U , let

φU,p(X) = φU (p,X), X ∈ GL(m;R).

Then φU,p : GL(m;R) → π−1(p) is a homeomorphism. If U ∩W ̸= ∅, for
p ∈ U ∩W , the map φ−1

W,p ◦ φU,p is a homeomorphism from GL(m;R) to

itself. In fact, φ−1
W,p ◦ φU,p is precisely the right translation of the Jacobian

matrix JUW = (∂wk/∂uj) on GL(m;R). Thus {JUW } forms a family of
transition functions on the frame bundle. Therefore the frame bundle P is
a fiber bundle that is not a vector bundle with GL(m;R) as its typical fiber.

Suppose (U ;ui) and (W ;wi) are two coordinate systems on M with the
corresponding coordinate systems (ui, Xk

i ) and (wi, Y k
i ) on P . Use (X∗k

i )
and (Y ∗k

i ) to denote the inverse matrices of (Xk
i ) and (Y k

i ), respectively,
that is

Xk
i X

∗j
k = X∗k

i Xj
k = δji , Y k

i Y
∗j
k = Y ∗k

i Y j
k = δji .

If U ∩W ̸= ∅, then on U ∩W we have

dwi =
∂wi

∂uj
duj .

On the other hand, since

Y k
i = Xj

i

∂wk

∂uj
,

we have

X∗j
i =

∂wk

∂ui
Y ∗j
k .

Hence

X∗j
i dui = Y ∗j

k

∂wk

∂ui
dui = Y ∗j

k dwk.
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This implies that the differential 1-form

θi = X∗i
j duj

is independent of the choice of local coordinates of P . Therefore θi can be
defined to be a differential 1-form on P .

Now suppose M is an m-dimensional affine connection space with con-
nection D. Suppose the connection matrix of D under the local coordinate
system (U ;ui) is ω = (ωj

i ). Then the absolute differential of the vector field
ei = Xi

k(∂/∂u
k) is

Dei = (dXk
i +Xj

i ω
k
i )⊗

∂

∂uk
.

If we view Xk
i as independent variables and let

DXk
i = dXk

i +Xj
i ω

k
j ,

then DXk
i is a differential 1-form on the coordinate neighborhood π−1(U) on

P . Suppose (W ;wi) is another local coordinate system ofM . If U ∩W ̸= ∅,
then we have

Y k
i = Xj

i

∂wk

∂uj

on U ∩W . Thus

DY k
i = dY k

i + Y j
i ω

′k
j

= dXj
i ·

∂wk

∂uj
+Xj

i d

Ç
∂wk

∂uj

å
+

X l
i

∂wj

∂ul

ñ
d

Å
∂up

∂wj

ã
∂wk

∂up
+
∂up

∂wj

∂wk

∂uq
ωq
p

ô
=
Ä
dXj

i +X l
iω

j
l

ä ∂wk

∂uj

= DXj
i ·

∂wk

∂uj
.

Hence

Y ∗j
k DY k

i = Y ∗j
k

∂wk

∂ul
DX l

i = X∗j
l DX l

i .

It follows that the differential 1-form

θji = X∗j
k DXk

i = X∗j
k

Ä
dXk

i +X l
iω

k
l

ä
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is independent of the choice of the local coordinate system, and is therefore
a differential 1-form on P .

Because (ui, Xk
i ) is a local coordinate system on P , (dui, dXk

i ) are co-

ordinates of the cotangent space at a point in P . Now θi along with θji are
(m2 +m) differential 1-forms defined on P . They can be written as linear
combinations of dui, dXk

i in the coordinate neighborhood π−1(U), and vice
versa. Thus θi and θki are linearly independent everywhere, that is {θi, θki }
forms a coframe field on the whole of P , whose dual is then a global frame
field on P .

Under the local coordinate system (U ;ui), we have

dui = Xi
jθ

j ,

dXj
i = −Xk

i ω
j
k +Xj

kθ
k
i ,

after the definition of θi and θki . Exteriorly differentiating both equations,
we obtain

0 = dXi
j ∧ θj +Xi

jdθ
j

=
Ä
−Xk

j ω
i
k +Xi

kθ
k
j

ä
∧ θj +Xi

jdθ
j

=
Ä
−Xk

j Γ
i
klX

l
hθ

h +Xi
kθ

k
j

ä
∧ θj +Xi

jdθ
j

= Xi
j

Ä
dθj − θk ∧ θjk

ä
−Xp

kX
l
hΓ

i
plθ

h ∧ θk,

and

0 = −dXk
i ∧ ωj

k −Xk
i dω

j
k + dXj

k ∧ θ
k
i +Xj

kdθ
k
i

= −
Ä
−X l

iω
k
l +Xk

l θ
l
i

ä
∧ ωj

k −Xk
i dω

j
k

+
Ä
−X l

kω
j
l +Xj

l θ
l
k

ä
∧ θki +Xj

kdθ
k
i

= −Xk
i Ω

j
k +Xj

k

Ä
dθki − θli ∧ θkl

ä
.

Hence

dθj − θk ∧ θjk = X∗j
r X

p
kX

l
hΓ

r
plθ

h ∧ θk

=
1

2
X∗j

r X
p
kX

q
l T

r
pqθ

k ∧ θl,

and

dθji − θki ∧ θjk = X∗j
h X

k
i Ω

h
k

=
1

2
X∗j

q X
p
i X

r
kX

s
l R

q
prsθ

k ∧ θl.
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Here T r
pq and Rq

prs are, respectively, the torsion tensor and the curvature
tensor. Let

P j
kl = X∗j

r X
p
kX

q
l T

r
pq,

Sj
ikl = X∗j

q X
p
i X

r
kX

s
l R

q
prs.

Then the above equations become

dθj − θk ∧ θjk =
1

2
P j
klθ

k ∧ θl,

dθji − θki ∧ θjk =
1

2
Sj
iklθ

k ∧ θl.

Obviously P j
kl and Sj

ikl are independent of the choice of local coordinates.
Therefore the above equations are valid on the whole frame bundle P , and
comprise the so-called structure equations of the connection.

The differential forms θi are determined by the differentiable structure
of M . The importance of the structure equations is that collectively they
give a sufficient condition for the m2 differential forms θki to define an affine
connection on M .

Lemma 3.3.1 (Cartan’s Lemma) Suppose {v1, · · · , vr} and {w1, · · · , wr}
are two sets of vectors in V such that

r∑
i=1

vi ∧ wi = 0.

If v1, · · · , vr are linearly independent, then the wi can be expressed as linear
combinations of the vj :

wi =

r∑
j=1

aijvj , 1 ≤ i ≤ r,

with aij = aji.

Theorem 3.3.2 Suppose θji , 1 ≤ i, j ≤ m are m2 differential 1-forms on
the frame bundle P . If they and the θi satisfy the structure equation

dθj − θk ∧ θjk =
1

2
P j
klθ

k ∧ θl,

dθji − θki ∧ θjk =
1

2
Sj
iklθ

k ∧ θl,
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where P j
kl and S

j
ikl are certain functions defined in P , then there exists an

affine connection D on M such that θji and D are related as

θji = X∗j
k DXk

i

locally.

Proof. Choose a coordinate neighborhood (U ;ui) of M , then (ui, Xk
i ) is a

local coordinate system in P . Then

θi = X∗i
k duk,

where (X∗i
k ) is the inverse matrix of (Xk

i ). Therefore

dθi = dX∗i
k ∧ duk =

Ä
dX∗i

k ·Xk
j

ä
∧ θj = −X∗i

k dXk
j ∧ θj .

Plugging this into the structure equation we have

θj ∧
Å
θij +

1

2
P i
jkθ

k −X∗i
k dXk

j

ã
= 0.

Since the θj are linearly independent, by Cartan’s Lemma, θij −X∗i
k dXk

j are

linear combinations of the θl. Thus we may assume

Xk
j θ

j
i − dXk

i = ωk
jX

j
i ,

where ωk
j are linear combinations of θl, and hence of dui. Let

ωk
j = Γk

jidu
i,

where Γk
ji are functions on P . If we can show that the Γk

ji are functions of u
i

only and independent of Xj
i , then Γk

ji are the coefficients of some connection

under the local coordinates ui, and the theorem will be proved.
Exteriorly differentiating the equation

Xk
j θ

j
i − dXk

i = ωk
jX

j
i

we obtain
dXk

j ∧ θji +Xk
j dθ

j
i = dωk

j ·Xj
i − ωk

j ∧ dXj
i .

This can be simplified to

Xj
i

Ä
dωk

j − ωl
j ∧ ωk

l

ä
=

1

2
Xk

j S
j
ilhθ

l ∧ θh
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by the structure equation. Since the right hand side contains only the differ-
entials dui and so does ωl

j∧ωk
l , dω

k
j should also contain only the differentials

dui. From
ωk
j = Γk

jidu
i

we have

dωk
j =

∂Γk
ji

∂ul
dul ∧ dui +

∂Γk
ji

∂Xh
l

dXh
l ∧ dui.

Hence
∂Γk

ji

∂Xh
l

= 0.

Therefore Γk
ji are only functions of ui.

Suppose (W ;wi) is another coordinate neighborhood ofM . Then (wi, Y k
i )

is the local coordinate system of P in π−1(W ). If U∩W ̸= ∅, then on U∩W
we have

θji = X∗j
k

Ä
dXk

i +X l
iω

k
l

ä
= Y ∗j

k

Ä
dY k

i + Y l
i ω

′k
l

ä
,

where ω′k
l = Γ′k

ljdw
j and the Γ′k

lj are functions of wj only. Plugging

Y k
i = Xj

i

∂wk

∂uj

and

X∗j
i =

∂wk

∂ui
Y ∗j
k

into this equation, we get

ω′j
i = d

Å
∂up

∂wi

ã
∂wj

∂up
+
∂up

∂wi

∂wj

∂uq
ωq
p.

This implies that (ωj
i ) indeed defines an affine connection D on M , such

that (ωj
i ) is the connection matrix of D under the local coordinate system

(U ;ui).

4 Riemannian Geometry

4.1 The Fundamental Theorem of Riemannian Geometry

Suppose M is an m-dimensional smooth manifold, and G is a symmetric
covariant tensor field of rank 2 on M . If (U ;ui) is a local coordinate system
on M , then the tensor field G can be expressed as

G = gijdu
i ⊗ duj
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on U , where gij = gji is a smooth function on U . G provides a bilinear
function on Tp(M) at every point p ∈M . Suppose

X = Xi ∂

∂ui
, Y = Y i ∂

∂ui
,

then
G(X,Y ) = gijX

iY j .

We say that the tensor G is nondegenerate at the point p if, whenever
X ∈ Tp(M) and G(X,Y ) = 0 for all Y ∈ Tp(M), it must be true that X = 0.
This implies that G is nondegenerate at p if and only if det(gij(p)) ̸= 0. If
for all X ∈ Tp(M) we have G(X,X) ≥ 0 and the equality holds only if
X = 0, then we say G is positive definite at p. A positive definite tensor
G is necessarily nondegenerate.

Definition 4.1.1 If an m-dimensional smooth manifold M is given a
smooth, everywhere nondegenerate symmetric covariant tensor field G of
rank 2, then M is called a generalized Riemmanian manifold, and G
is called a fundamental tensor of metric tensor of M . If G is positive
definite, then M is called a Riemannian manifold.

For a generalized Riemannian manifold M , G specifies an inner product
on the tangent space Tp(M) at every point p ∈M . For any X,Y ∈ Tp(M),
let

X · Y = G(X,Y ) = gij(p)X
iY j .

When G is positive definite, it is meaningful to define the length of a tangent
vector and the angle between two tangent vectors at the same point, i.e.,

|X| =
»
gijXiY j , cos∠(X,Y ) =

X · Y
|X||Y |

.

Thus a Riemannian manifold is a differentiable manifold which has a positive
definite inner product on the tangent space at every point. The inner prod-
uct is required to be smooth in the sense that if X,Y are smooth tangent
vector fields, then X · Y is a smooth function on M .

The differential 2-form

ds2 = gijdu
iduj

is independent of the choice of the local coordinate system ui and is usually
called the metric form or Riemannian metric. ds is precisely the length
of an infinitesimal tangent vector, and is called the element of arc length.
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Suppose C : ui = ui(t), t0 ≤ t ≤ t1 is a continuous and piecewise smooth
parametrized curve on M . Then the arc length of C is defined to be

s =

∫ t1

t0

 
gij

dui

dt

duj

dt
dt.

Theorem 4.1.1 There exists a Riemannian metric on any m-dimensional
smooth manifold M .

Proof. Choose a locally finite coordinate covering {(Uα;u
i
α)} ofM . Suppose

{hα} is the corresponding partition of unity such that supphα ⊂ Uα. Let

ds2α =
m∑
i=1

(duiα)
2, ds2 =

∑
α

hαds
2
α.

Then the ds2α and ds2 are defined to be smooth differential 2-forms onM . If
we choose a coordinate neighborhood (U ;ui) such that U is compact, then
U intersects only finitely many Uα1 , · · · , Uαr by the local finiteness of {Uα}.
Thereforethe restriction of ds2 to U is

ds2 =
r∑

λ=1

hαλ
ds2αλ

= gijdu
iduj ,

where

gij =
r∑

λ=1

m∑
k=1

hαλ

∂ukαλ

∂ui
∂ukαλ

∂uj
.

Since 0 ≤ hα ≤ 1 and
∑

α hα = 1, there exists an index β such that hβ(p) >
0. Hence ds2(p) ≥ hβds

2
β(p). Thus ds2 is positive definite everywhere on

M .

Assume M is a generalized Riemannian manifold. When the local coor-
dinate system is changed, the transformation formula for the components of
a fundamental tensor G is given by

g′ij = gkl
∂uk

∂u′i
∂ul

∂u′j
.

Since the matrix (gij) is nondegenerate, we may denote its inverse by (gij),
i.e.,

gikgkj = gjkg
ki = δij .
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The transformation for gij under a change of coordinates is given by

g′ij = gkl
∂u′i

∂uk
∂u′j

∂ul
.

Hence (gij) is a symmetric contravariant tensor of rank 2.
Using the fundamental tensor, we may identify a tangent space with a

cotangent space, and hence a contravariant vector and a covariant vector can
be viewed as different expressions of the same vector. In fact, if X ∈ Tp(M),
let

αX(Y ) = G(X,Y ), Y ∈ Tp(M).

Then αX is a linear functional on Tp(M), i.e. αX ∈ T ∗
p (M). Conversely,

since G is nondegenerate, any element of T ∗
p (M) can be expressed in the

form αX . Thus α establishes an isomorphism between Tp(M) and T ∗
p (M).

Componentwise, if

X = Xi ∂

∂ui
, αX = Xidu

i,

then we obtain from the relation of X and αX that

Xi = gijX
j , Xj = gijXi.

In general, if
Ä
ti1···irj1···js

ä
is a (r, s)-type tensor, then

t
i1···ir−1

kj1···js = gklt
i1···ir−1l
j1···js , ti1···irkj2···js = gklti1···irlj2···js

are (r − 1, s + 1)-type and (r + 1, s − 1)-type tensors, respectively. These
operations are usually called the lowering and raising of tensorial indices,
respectively.

Definition 4.1.2 Suppose (M,G) is an m-dimensional generalized Rie-
mannian manifold, and D is an affine connection on M . If

DG = 0,

then D is called a metric-compatible connection on (M,G).

Condition DG = 0 means that the fundamental tensor G is parallel with
respect to metric-compatible connections. If the connection matrix of D
under the local coordinates ui is ω = (ωj

i ), then

DG =
Ä
dgij − ωk

i gkj − ωk
j gik
ä
⊗ dui ⊗ duj .
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Thus DG = 0 is equivalent to

dgij = ωk
i gkj + ωk

j gik,

or in matrix notation,
dG = ω ·G+G · ωT ,

where G represents the matrix

G =

Ö
g11 · · · g1m
...

...
gm1 · · · gmm

è
.

The geometric meaning of metric-compatible connections is that parallel
translations preserve the metric. In particular, on a Riemannian manifold,
the length of a tangent vector and the angle between two tangent vectors
are invariant under parallel translations.

Theorem 4.1.2 (Fundamental Theorem of Riemanninan Geome-
try) Suppose M is an m-dimensional generalized Riemannian manifold.
Then there exists a unique torsion-free and metric-compatible connection
on M , called the Levi-Civita connection of M , or the Riemannian
connection of M .

Proof. Suppose D is a torsion-free and metric-compatible connection on M .
Denote the connection matrix of D under the local coordinates ui by ω =
(ωj

i ), where

ωj
i = Γj

ikdu
k.

Then we have

dgij = ωk
i gkj + ωk

j gki,

Γj
ik = Γj

ki.

Denote
Γijk = gljΓ

j
ik, ωik = glkω

l
i.

Then

∂gij
∂uk

= Γijk + Γjik,

Γijk = Γkji.
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Cycling the indices, we get

∂gik
∂uj

= Γikj + Γkij ,

∂gjk
∂ui

= Γjki + Γkji.

Therefore

∂gik
∂uj

+
∂gjk
∂ui

− ∂gij
∂uk

= Γikj + Γkij + Γjki + Γkji − Γijk − Γjik = 2Γikj .

We then obtain

Γikj =
1

2

Å
∂gik
∂uj

+
∂gjk
∂ui

− ∂gij
∂uk

ã
,

and then

Γk
ij =

1

2
gkl
Å
∂gil
∂uj

+
∂gjl
∂ui

− ∂gij
∂ul

ã
.

Thus the torsion-free and metric-compatible connection is determined uniquely
by the metric tensor.

Conversely, the Γk
ij defined above indeed satisfy the transformation equa-

tion for connection coefficients under a change of local coordinates. Hence
they define an affine connection D on M . Computations also verify that D
is a torsion-free and metric-compatible connection on M .

The Γikj and Γk
ij defined above are called Christoffel symbols of the

first kind and second kind, respectively.
It is more convenient to use an arbitrary frame field instead of the natural

frame field in a neighborhood of a Riemannian manifold. A local frame field
is a local section of the frame bundle. Suppose (e1, · · · , em) is a local frame
field with coframe field (θ1, · · · , θm). Let

Dei = θji ej ,

where θ = (θji ) is the connection matrix of D with respect to the frame field

(e1, · · · , em). Here the θi, θji are exactly the forms obtained by pulling the

differential 1-forms θi and θji on the frame bundle P back to local sections.
Hence by the structure equations, the statement that D is torsion-free is
equivalent to the statement that the θji satisfy the equations

dθi − θj ∧ θij = 0.
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If we still denote gij = G(ei, ej), then the metric form is ds2 = gijθ
iθj . Since

G = gijθ
i ⊗ θj , we have

DG =
Ä
dgij − gikθ

k
j − gkjθ

k
i

ä
⊗ θi ⊗ θj .

Therefore the condition for D to be metric-compatible is still

dgij = gikθ
k
j + gkjθ

k
i .

Now the Fundamental Theorem of Riemannian Geometry can be restated
as follows.

Theorem 4.1.3 Suppose (M,G) is a generalized Riemannian manifold,
and {θi, 1 ≤ i ≤ m} is a set of differential 1-forms on a neighborhood U ⊂M
which is linearly independent everywhere. Then there exists a unique set of
m2 differential 1-forms θkj on U such that

dθi − θj ∧ θij = 0,

and
dgij = gikθ

k
j + gkjθ

k
i ,

where the gij are the components of G with respect to the local coframe
field {θi}, i.e. G = gijθ

i ⊗ θj .

If M is a Riemannian manifold, and G is positive definite, then we can
choose an orthogonal frame field {ei, 1 ≤ i ≤ m} in U with gij = δij , or
equivalently,

ds2 =
m∑
i=1

(θi)2.

The condition for the connection to be metric-compatible then becomes

θij + θji = 0,

which implies that the connection matrix θ = (θji ) is skew-symmetric.
By definition, the curvature matrix of the Levi-Civita connection ω is

Ω = dω − ω ∧ ω.

Exterior differentiation of the equation

dG = ω ·G+G · ωT
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yields
dω ·G− ω ∧ dG+ dG ∧ ωT +G · (dω)T = 0,

and then
(dω − ω ∧ ω) ·G+G · (dω − ω ∧ ω)T = 0,

i.e.
Ω ·G+ (Ω ·G)T = 0.

Let
Ωij = Ωk

i gkj ,

then Ω ·G = (Ωij), and the above equation becomes

Ωij +Ωji = 0,

that is, Ωij is skew-symmetric with respect to the lower indices. By a direct
calculation we get

Ωij = dωij − ωk
i ∧ ωjk.

Also, we have

Ωj
i =

1

2
Rj

ikldu
k ∧ dul,

where

Rj
ikl =

∂Γj
il

∂uk
−
∂Γj

ik

∂ul
+ Γh

ilΓ
j
hk − Γh

ikΓ
j
hl.

If we let
Rijkl = Rh

iklghj ,

then

Ωij =
1

2
Rijkldu

k ∧ dul,

and

Rijkl =
∂Γijl

∂uk
−
∂Γijk

∂ul
+ Γh

ikΓjhl − Γh
ilΓjhk.

Here Rijkl is a covariant tensor of rank 4. It is determined completely by
a given generalized Riemannian metric on M , and is called the curvature
tensor of the generalized Riemannian manifold M .

Theorem 4.1.4 The curvature tensor Rijkl of a generalized Riemannian
manifold satisfies the following properties:

1. Rijkl = −Rjikl = −Rijlk;

2. Rijkl +Riklj +Riljk = 0;

56



3. Rijkl = Rklij .

Proof. The skew-symmetry of Rj
ikl in the last two lower indices implies the

same property of Rijkl, i.e.,

Rijkl = −Rijlk.

Since we have

0 = Ωij +Ωji =
1

2
(Rijkl +Rjikl)du

k ∧ dul,

it must be true that
Rijkl +Rjikl = 0.

From the torsion-free property of the Levi-Civita connection we have

dui ∧ ωij = 0.

Exteriorly differentiating this and using the formula

Ωij = dωij + ωk
i ∧ ωjk,

we then have
dui ∧ (Ωij − ωk

i ∧ ωjk) = 0,

thus
dui ∧ Ωij = 0.

Therefore
Rjikldu

i ∧ duk ∧ dul = 0,

or equivalently,

(Rjikl +Rjkli +Rjlik)du
i ∧ duk ∧ dul = 0.

Since the coefficients are skew-symmetric in the last three indices, we have

Rjikl +Rjkli +Rjlik = 0.

We can cycle the indices to obtain

Rijkl +Riklj +Riljk = 0.

It follows that

0 = (Rijkl +Riklj +Riljk)− (Rjikl +Rjkli +Rjlik)

= 2Rijkl +Riklj +Riljk +Rjkil +Rljik.
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Similarly we also have

2Rklij +Rkijl +Rkjli +Rlikj +Rjlki = 0.

Due to the skew-symmetry property 1, we finally have

Rijkl = Rklij .

As a corollary, under the same conditions as in Theorem 4.1.4, we have

Ri
jkl +Ri

klj +Ri
ljk = 0.

Further, from DG = 0 we have

gij,k = 0,

and hence
Rijkl,h = (gjpR

p
ikl),h = gjpR

p
ikl,h.

Thus it follows from

Rj
ikl,h +Rj

ilh,k +Rj
ihk,l = 0

that
Rijkl,h +Rijlh,k +Rijhk,l = 0.

This is also called the Bianchi identity.

4.2 Geodesic Normal Coordinates

Definition 4.2.1 Suppose M is an m-dimensional Riemannian manifold.
If a parametrized curve C is a geodesic curve in M with respect to the Levi-
Civita connection, then C is called a geodesic of the Riemannian manifold
M .

Suppose the coefficients of the Levi-Civita connection D under the local
coordinates ui are Γi

jk. Then the curve C : ui = ui(t), 1 ≤ i ≤ m is a
geodesic if it satisfies the system of second order differential equations

d2ui

dt2
+ Γi

jk

duj

dt

duk

dt
= 0, 1 ≤ i ≤ m.
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By definition, the tangent vector of a geodesic is parallel along the curve with
respect to the Levi-Civita connection, which also preserves metric properties
under parallel displacement. Therefore the length of the tangent vector

X = Xi ∂

∂ui
=

dui

dt

∂

∂ui

of a geodesic is constant, that is,

ds

dt
= const.

Hence we see that the parameter for a geodesic curve in a Riemannian
manifold must be a linear function of the arc length s, i.e.

t = λs+ µ,

where λ ̸= 0 and µ are constants.
The discussions below only assume thatM is an affine connection space.

Suppose the equation of a geodesic under the coordinate system (U ;ui) is
given by

d2ui

dt2
+ Γi

jk

duj

dt

duk

dt
= 0, 1 ≤ i ≤ m.

By the theory of ordinary differential equations, there exist for any point
x0 ∈ U a neighborhood W ⊂ U of x0 and positive numbers r, δ such that
for any initial value x ∈ W and α ∈ Rm satisfying ∥α∥ < r, the system of
equations has a unique solution in U expressed as

ui = f i(t, xk, αk), |t| < δ,

that satisfies the initial conditions

ui(0) = f i(0, xk, αk) = xi,

dui

dt
(0) =

∂f i(t, xk, αk)

∂t

∣∣∣∣∣
t=0

= αi.

Furthermore, the functions f i depend smoothly on the independent variable
t and the initial values xk, αk.

If we choose a nonzero constant c, then the functions f i(ct, xk, αk), x ∈
W, ∥α∥ < r, |t| < δ/|c| still satisfy the system of equations with initial values

f i(ct, xk, αk)
∣∣∣
t=0

= xi,

∂f i(ct, xk, αk)

∂t

∣∣∣∣∣
t=0

= cαk.
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By the uniqueness property of the solution of the system of differential
equations, whenever ∥α∥, ∥cα∥ < r and |t|, |ct| < δ, we have

f i(ct, xk, αk) = f i(t, xk, cαk).

Since the left hand side of the above equation is always defined when x ∈
W, ∥α∥ < r, |t| < δ/|c|, we can use it to define the right hand side. Thus
the function f i(t, xk, αk) is always defined for x ∈ W, |t| < δ/|c|, ∥α∥ < |c|r.
In particular, we can choose |c| < δ, so that f i(t, xk, αk) is defined for
x ∈W, |t| ≤ 1 and ∥α∥ < |c|r. Let

ui = f i(1, xk, αk),

then
f i(1, xk, 0) = f i(0, xk, αk) = xk.

Thus for a fixed x ∈ W , this provides a smooth map from a neighborhood
of the origin in the tangent space Tx(M) to a neighborhood of x in the
manifold M . Because

αi =
∂f i(t, xk, αk)

∂t

∣∣∣∣∣
t=0

=
∂f i(1, xk, tαk)

∂t

∣∣∣∣∣
t=0

=
∂f i(1, xk, αk)

∂αj

∣∣∣∣∣
α=0

· αj ,

we have Ç
∂ui

∂αj

å
α=0

= δij .

Hence the αi can be chosen to be local coordinates of x in M , called the
geodesic normal coordinates of x, or simply normal coordinates. A
normal coordinate system of a point in M is determined up to a nondegen-
erate linear transformation.

Fix αk = αk
0 . As t changes, tα

k
0 describes a straight line in Tx(M) starting

from the origin, and traces a geodesic curve on the manifold starting from
x and tangent to the tangent vector (αk

0). Therefore the equation for this
geodesic curve under the normal coordinate system αi is

αk = tαk
0 ,

where αk
0 is a constant.

Theorem 4.2.1 If M is a torsion-free affine connection space, then with
respect to a normal coordinate system αi at the point x, the connection
coefficients Γi

jk are zero at x.
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Proof. Since the geodesic curve αi = tαi
0 satisfies the system of differential

equations for geodesics under the normal coordinate system αi, we have for
any αk

0 ,
Γi
jkα

j
0α

k
0 = 0.

Since Γi
jk is symmetric in the lower indices for torsion-free connections, we

have
Γi
jk(0) = 0, 1 ≤ i, j, k ≤ m.

Theorem 4.2.2 For any point x0 in an affine connection space M , there
exists a neighborhood W of x0 such that every point in W has a normal
coordinate neighborhood that contains W .

Proof. Suppose (U ;ui) is a normal coordinate system at a point x0. Let

U(x0; ρ) =

{
x ∈ U

∣∣∣∣∣
m∑
i=1

(ui(x))2 < ρ2

}
.

By the above discussion, there exists a neighborhood W = U(x0; r) of x0
and a positive number δ such that for any x ∈ W and α ∈ Rm, ∥α∥ < δ,
there is a unique geodesic curve

ui = f i(t, xk, αk), |t| < 2,

with initial condition (x, α). Let

B(0; δ) = {α ∈ Rm | ∥α∥ < δ}.

Then we have a map φ :W ×B(0; δ) →W × U such that

φ(x, α) = (xk, fk(1, xi, αi)), x ∈W,α ∈ B(0; δ).

The map φ is smooth since the function fk depend on x and α smoothly.
Noting that

∂(xk, fk)

∂(xi, αi)

∣∣∣∣∣
(x0,0)

= 1,

the Jacobian matrix of the map φ is nondegenerate near the point (x0, 0) ∈
W ×B(0; δ). By the Inverse Function Theorem, there exists a neighborhood
V of the point (x0, 0) and a positive number a < δ such that φ : V →
U(x0; a)× U(x0; a) is a diffeomorphism. For any x ∈ U(x0; a), let

Vx = {α ∈ B(0; a) | (x, α) ∈ V }.
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Then the map
ui = f i(1, xk, αk), α ∈ Vx

is a diffeomorphism from Vx to U(x0; a). Choose W ′ = U(x0; a), and then
the above formula shows that W ′ has the desired property.

Corollary 4.2.3 For every point x0 in an affine connection spaceM , there
exists a neighborhood W of x0 such that any two points in W can be con-
nected by a geodesic curve.

Theorem 4.2.4 A torsion-free affine connection is completely determined
locally by the curvature tensor.

Proof. Consider a normal coordinate system αi at a fixed point O. Choose
a natural frame at O, and parallel displace the frame along the geodesic
curves starting from O. Thus we get a frame field {ei, 1 ≤ i ≤ m} in a
neighborhood of O. Let θi be the dual differential 1-forms of ej , and denote
the restriction of the everywhere linearly independentm2 differential 1-forms
θji of the frame bundle to the above frame field by the same notation. Then

θi, θji are differential 1-forms of t, αk. When the αk are constants, θi, θji are
restricted to the geodesic curve αit. Since the frame field is parallel along
the geodesic curve αit, we have

θi = αidt+ θ̄i,

θji = θ̄ji ,

where θ̄i and θ̄ji are the parts of θi and θji without dt. Plugging this into
the structure equations and comparing the terms with dt, we obtain

∂θ̄i

∂t
= dαi + αj θ̄ij ,

∂θ̄ji
∂t

= αkSj
iklθ̄

l.

Differentiating the first formula with respect to t again, we obtain

∂2θ̄i

∂t2
= αj

∂θ̄ij
∂t

= αjαkSi
jklθ̄

l.

Since the frame field ei is parallel along any direction at the point O, we
have

θ̄ji

∣∣∣
t=0

= 0,
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and then
∂θ̄i

∂t

∣∣∣∣
t=0

= dαi.

Moreover, by definition we have

θi
∣∣∣
t=0

= αidt,

and thus
θ̄i
∣∣∣
t=0

= 0.

For a given curvature tensor, the system of second-order ordinary differ-
ential equations

∂2θ̄i

∂t2
= αjαkSi

jklθ̄
l

has a unique solution for θ̄i under the initial conditions, and θ̄ji is then
completely determined. Hence the curvature tensor completely determines
the torsion-free affine connection locally.

Now assume M is an m-dimensional Riemannian manifold. Suppose
x0 ∈ M , and choose a fixed orthogonal frame F0 in the tangent space
Tx0(M). Then the normal coordinate system ui at x0 can be expressed
as ui = αis, where (αi) is a unit vector in Tx0(M) and s is the arc length of
the geodesic curves starting from x0. Displace the frame F0 parallel along
the geodesic curves originating from x0 to obatin an orthogonal frame field
in a neighborhood of x0. We can write

θi = αids+ θ̄i, θji = θ̄ji ,

where θ̄i, θ̄ji do not contain the differential ds, and satisfy the equations

∂θ̄i

∂s
= dαi + αj θ̄ij ,

∂θ̄ji
∂s

= αkSj
iklθ̄

l,

θ̄ji + θ̄ij = 0,

with initial conditions

θ̄i
∣∣∣
s=0

= 0, θ̄ji

∣∣∣
s=0

= 0,
∂θ̄i

∂s

∣∣∣∣
s=0

= dαi.
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The arc length element near the point O can be expressed by

dσ2 =
m∑
i=1

(θi)2 = ds2 + 2ds
m∑
i=1

αiθ̄i +
m∑
i=1

(θ̄i)2.

Since
m∑
i=1

(αi)2 = 1,

we have
m∑
i=1

αidαi = 0.

Together with
θ̄ji + θ̄ij = 0,

we see that

∂

∂s

(
m∑
i=1

αiθ̄i

)
=

m∑
i=1

αi

Ñ
dαi +

m∑
j=1

αj θ̄ij

é
= 0.

Therefore
m∑
i=1

αiθ̄i =
m∑
i=1

αiθ̄i

∣∣∣∣∣
s=0

= 0.

Hence the arc length element near O is

dσ2 = ds2 +

m∑
i=1

(θi)2.

Theorem 4.2.5 For every point O in a Riemannian manifold M , there
exists a normal coordinate neighborhood W such that

1. Every point inW has a normal coordinate neighborhood that contains
W .

2. The geodesic curve that connects O and p ∈W is the unique shortest
curve in W connecting these two points.

Proof. Applying Theorem 4.2.2 to the Levi-Civita connection of M , and
condition 1 follows. Now assume that ui is the normal coordinate system
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of the point O given by ui = αis. A normal coordinate neighborhood W as
required in consition 1 is

W =

{
p ∈M

∣∣∣∣∣
m∑
i=1

(ui(p))2 < ε2

}
,

where ε is a sufficiently small positive number. Because W is a normal
coordinate neighborhood, for any p ∈ W , there exists a unique geodesic
curve γ in W that connects O and p. Suppose the length of γ is s0.

Suppose C is any piecewise smooth curve in W that connects O and p.
We may assume that the parametrized equation for C is ui = ui(s), where
s is the arc length parameter of γ. Then the arc length of C is

∫ s0

0
dσ =

∫ s0

0

Ã
ds2 +

m∑
i=1

(θi)2 ≥
∫ s0

0
ds = s0.

If C is the shortest path in W connecting O and p, then the equality holds.
Hence we must have

θ̄i = 0

along the curve C. If we write

θ̄i = sdαi +Ai
jdα

j ,

then the Ai
j satisfy the initial conditions

Ai
j

∣∣∣
s=0

= 0,
∂Ai

j

∂s

∣∣∣∣∣
s=0

= 0.

This implies that Ai
j = o(s) when s→ 0. Since

dαi +
Ai

j

s
dαj = 0

holds on C, we can let s→ 0 to obtain

dαi = 0, αi = const.

It follows that C is a geodesic curve connecting O and p, i.e. C = γ.
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Theorem 4.2.6 Suppose U is a normal coordinate neighborhood of the
point O. Then there exists a positive number ε such that, for any 0 < δ < ε,
the hypersphere

Σδ =

{
p ∈ U

∣∣∣∣∣
m∑
i=1

(ui(p))2 = δ2

}
has the following properties:

1. Every point on Σδ can be connected to O by a unique shortest geodesic
curve in U .

2. Any geodesic curve tangent to Σδ is strictly outside Σδ in a deleted
neighborhood of the tangent point.

Proof. Choose W to be a normal coordinate neighborhood as required in
Theorem 4.2.5. We may assume that W is a spherical neighborhood with
radius ε. When 0 < δ < ε, since Σδ ⊂W ⊂ U and U is a normal coordinate
neighborhood, property 1 is just a corollary of Theorem 4.2.5.

The equation of Σδ can be written as

F (u1, · · · , um) =
1

2
[(u1)2 + · · ·+ (um)2 − δ2] = 0.

Suppose γ is a geodesic curve tangent to Σδ at p, and its equation is

ui = ui(σ),

where σ is the arc length of γ measured from the point p. Then

F (ui(σ))|σ=0 = 0.

By the discussion before Theorem 4.2.5, the hypersphere Σδ is orthogonal to
geodesic curves starting from the point O, thus the geodesic curve γ tangent
to Σδ at the point p should be orthogonal to the geodesic curve connecting
O and p. Therefore

m∑
i=1

ui(σ)
dui

dσ

∣∣∣∣∣
σ=0

= 0.

Direct calculation yields

d

dσ
F (ui(σ))

∣∣∣∣
σ=0

=
m∑
i=1

ui(σ)
dui

dσ

∣∣∣∣∣
σ=0

= 0,
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and

d2

dσ2
F (ui(σ))

∣∣∣∣∣
σ=0

=
m∑

i,j=1

[
δij −

m∑
k=1

uk(p)Γk
ij(p)

]
· du

i

dσ

∣∣∣∣
s=0

· du
j

dσ

∣∣∣∣
s=0

.

Since (U ;ui) is a normal coordinate system, we have

Γk
ij(p) = 0.

Hence we can choose a sufficiently small ε > 0 such that whenever 0 < δ < ε,
the second-order derivative of F (ui(σ)) with respect to σ at σ = 0 is always
positive. Thus F (ui(σ)) is strictly positive near p, which means that the
geodesic curve lies strictly outside Σδ near p, and has only one point in
common with Σδ, namely p.

Definition 4.2.2 Suppose M is a connected Riemannian manifold, and
p, q are two arbitrary points in M . Let

ρ(p, q) = inf Ùpq,
where Ùpq denotes the arc length of a curve connecting p and q with measur-
able arc length. Then ρ(p, q) is called the distance between points p and
q.

Theorem 4.2.7 The function ρ :M×M → R is a metric onM and makes
M a metric space. The topology of M as a metric space and the original
topology of M as a manifold are equivalent.

Theorem 4.2.8 There exists a η-ball neighborhood W at any point p in
a Riemannian manifold M , where η is a sufficiently small positive number,
such that any two points in W can be connected by a geodesic curve inside
W . Such a neighborhood is called a geodesic convex neighborhood.

Proof. Suppose p ∈M . There exists a ball-shaped normal coordinate neigh-
borhood U of p with radius ε such that for any point q in U there is a normal
coordinate neighborhood Vq that contains U . We may assume that ε also
satisfies the requirements of Theorem 4.2.6. Choose a positive η < ε/4.
We will show that the η-ball neighborhood W of p is a geodesic convex
neighborhood of p.

Choose any q1, q2 ∈W . Then

ρ(q1, q2) ≤ ρ(p, q1) + ρ(p, q2) < 2η ≤ ε

2
.
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Suppose U(q1; ε/2) is an ε/2-ball neighborhood of q1, then q2 ∈ U(q1; ε/2) ⊂
U ⊂ Vq1 . By Theorem 4.2.5, there exists a unique geodesic curve γ in
U(q1; ε/2) connecting q1 and q2, whose length is precisely ρ(q1, q2). We
prove that the geodesic curve γ lies inside W . Since γ ⊂ U(q1; ε/2) ⊂ U ,
the function ρ(p, q), q ∈ γ is bounded. If γ does not lie inside W completely,
then the function ρ(p, q), q ∈ γ must attain its maximum at an interior point
q0 of γ. Let δ = ρ(p, q0). Then δ < ε, and the hypersphere Σδ is tangent to γ
at q0. By Theorem 4.2.6, γ lies completely outside Σδ near q0, contradicting
the fact that ρ(p, q), q ∈ γ attains its maximum at q0. Therefore γ ⊂W .

4.3 Sectional Curvature

SupposeM is an m-dimensional Riemannian manifold whose curvature ten-
sor R is a covariant tensor of rank 4, and ui is a local coordinate system in
M . Then R can be expressed as

R = Rijkldu
i ⊗ duj ⊗ duk ⊗ dul.

At every point p ∈M , we have a multilinear function R : Tp(M)×Tp(M)×
Tp(M)× Tp(M) → R, defined by

R(X,Y, Z,W ) = ⟨X ⊗ Y ⊗ Z ⊗W,R⟩.

If we let

X = Xi ∂

∂ui
, Y = Y i ∂

∂ui
, Z = Zi ∂

∂ui
, W =W i ∂

∂ui
,

then
R(X,Y, Z,W ) = RijklX

iY jZkW l.

In particular

Rijkl = R

Å
∂

∂ui
,
∂

∂uj
,
∂

∂uk
,
∂

∂ul

ã
.

We have already interpreted the curvature tensor of a connection D as a
curvature operator: for any given Z,W ∈ Tp(M), R(Z,W ) is a linear map
from Tp(M) to Tp(M) defined by

R(Z,W )X = Rj
iklX

iZkW l ∂

∂uj
.

If D is the Levi-Civita connection of a Riemannian manifold M , then we
have

R(X,Y, Z,W ) = R(Z,W )X · Y,
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where · on the right hand side is the inner product defined by

X · Y = G(X,Y ).

By the properties of Rijkl, the 4-linear function R(X,Y, Z,W ) has the fol-
lowing properties:

1. R(X,Y, Z,W ) = −R(X,Y,W,Z) = −R(Y,X,Z,W );

2. R(X,Y, Z,W ) +R(X,Z,W, Y ) +R(X,W, Y, Z) = 0;

3. R(X,Y, Z,W ) = R(Z,W,X, Y ).

Using the fundamental tensor G of M , we can also define a function

G(X,Y, Z,W ) = G(X,Z)G(Y,W )−G(X,W )G(Y,Z).

Obviously the function defined above is linear with respect to every variable,
and also has the same properties 1-3 as R(X,Y, Z,W ). If X,Y ∈ Tp(M),
then

G(X,Y,X, Y ) = |X|2|Y |2 − (X · Y )2 = |X|2|Y |2 sin2∠(X,Y ).

Therefore whenX,Y are linearly independent, G(X,Y,X, Y ) is precisely the
square of the area of the parallelogram determined by the tangent vectors
X and Y . Hence G(X,Y,X, Y ) ̸= 0.

Suppose X ′, Y ′ are another two linearly independent tangent vectors at
the point p, and that they span the same 2-dimensional tangent subspace E
as that spanned by X and Y . Then we may assume that

X ′ = aX + bY, Y ′ = cX + dY,

where ad− bc ̸= 0. By properties 1-3 we have

R(X ′, Y ′, X ′, Y ′) = (ad− bc)2R(X,Y,X, Y ),

G(X ′, Y ′, X ′, Y ′) = (ad− bc)2G(X,Y,X, Y ).

Thus
R(X ′, Y ′, X ′, Y ′)

G(X ′, Y ′, X ′, Y ′)
=
R(X,Y,X, Y )

G(X,Y,X, Y )
.

This implies that the above expression is a function of the 2-dimensional
subspace E of Tp(M), and is independent of the choice of X and Y .
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Definition 4.3.1 Suppose E is a 2-dimensional subspace of Tp(M), and
X,Y are any two linearly independent vectors in E. Then

K(E) = −R(X,Y,X, Y )

G(X,Y,X, Y )

is a function of E independent of the choice of X and Y in E. It is called
the Riemannian curvature, or sectional curvature, of M at (p,E).

The product of the two principal curvatures at a point on a surface in
3-dimensional Euclidean space is called the total curvature, or Gauss
curvature, of the surface at that point. The Theorema Egregium shows
that the total curvature K depends only on the first fundamental form of
the surface as

K = −R1212

g
,

where
g = g11g22 − g212

and

R1212 =
∂Γ122

∂u1
− ∂Γ121

∂u2
+ Γh

11Γ2h2 − Γh
12Γ2h1.

Suppose m ≥ 3 and E is a 2-dimensional subspace of Tp(M). Choose
an orthogonal frame {ei} at p such that E is spanned by {e1, e2}. Suppose
ui is the geodesic normal coordinate system determined by this frame near
p. Now consider the 2-dimensional submanifold S of all geodesic curves
starting from p and tangent to E. Then the equation for S is

ur = 0, 3 ≤ r ≤ m,

and (u1, u2) are the normal coordinates of S at p. S is called the geodesic
submanifold at p tangent to E. We will prove that the sectional curvature
K(E) of M at (p,E) is exactly the total curvature of the surface S, with
Riemannian metric induced from M , at p.

Suppose the Riemannian metric of M near p is

ds2 = gijdu
iduj .

Then its induced metric on S is

ds̄2 = ḡαβdu
αduβ, 1 ≤ α, β ≤ 2,

where
ḡαβ(u

1, u2) = gαβ(u
1, u2, 0, · · · , 0).
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Therefore

Γαβγ |S =
1

2

Å
∂gβγ
∂uα

+
∂gαβ
∂uγ

− ∂gαγ
∂uβ

ã∣∣∣∣
S

=
1

2

Å
∂ḡβγ
∂uα

+
∂ḡαβ
∂uγ

− ∂ḡαγ
∂uβ

ã
= Γαβγ .

Since (ui) and (uα) are normal coordinate systems ofM and S, respectively,
at p, we have

Γαβγ(p) = Γijk(p) = 0.

Hence

R1212(p) =

Å
∂Γ122

∂u1
− ∂Γ121

∂u2
+ Γh

11Γ2h2 − Γh
12Γ2h1

ã
p

=

Ç
∂Γ122

∂u1
− ∂Γ121

∂u2

å
p

= R1212(p).

The sectional curvature of M at (p,E) is then

K(E) = −R(e1, e2, e1, e2)
G(e1, e2, e1, e2)

= − R1212

g11g22 − g212

∣∣∣∣
p

= − R1212

ḡ11ḡ22 − ḡ212

∣∣∣∣∣
p

= K(p).

The right hand side is precisely the total curvature of the surface S at p.

Theorem 4.3.1 The curvature tensor of a Riemannian manifold M at
a point p is uniquely determined by the sectional curvatures of all the 2-
dimensional tangent subspaces at p.

Proof. Suppose there is a 4-linear function R(X,Y, Z,W ) satisfying all the
properties 1-3 of the curvature tensor R(X,Y, Z,W ), and that for any two
linearly independent tangent vectors X,Y at p,

R(X,Y,X, Y )

G(X,Y,X, Y )
=
R(X,Y,X, Y )

G(X,Y,X, Y )
.

We will show that for any X,Y, Z,W ∈ Tp(M), we have

R(X,Y, Z,W ) = R(X,Y, Z,W ).

If we let
S(X,Y, Z,W ) = R(X,Y, Z,W )−R(X,Y, Z,W ),
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Then S is also a 4-linear function satisfying the properties 1-3 and for any
X,Y ∈ Tp(M), it holds that

S(X,Y,X, Y ) = 0.

It suffices to show that S is the zero function.
First we have

S(X + Z, Y,X + Z, Y ) = 0.

Expanding this and using the properties of S we obtain

S(X,Y, Z, Y ) = 0.

Thus
S(X,Y +W,Z, Y +W ) = 0,

and by expanding we obtain

S(X,Y, Z,W ) + S(X,W,Z, Y ) = 0.

Therefore

S(X,Y, Z,W ) = −S(X,W,Z, Y ) = S(X,W, Y, Z).

A similar argument shows that

S(X,Y, Z,W ) = S(X,W, Y, Z) = S(X,Z,W, Y ).

On the other hand, it holds the identity

S(X,Y, Z,W ) + S(X,Z,W, Y ) + S(X,W, Y, Z) = 0.

Thus
S(X,Y, Z,W ) = 0

and the proof is completed.

Definition 4.3.2 Suppose M is a Riemannian manifold. If the sectional
curvature K(E) at the point p is a constant, i.e. independent of E, then we
say that M is wandering at p.

If M is wandering at p, then the sectional curvature of M at p can be
denoted by K(p). Hence for any X,Y ∈ Tp(M) we have

R(X,Y,X, Y ) = −K(p)G(X,Y,X, Y ).
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According to the proof of Theorem 4.3.1, for any X,Y, Z,W ∈ Tp(M), we
have

R(X,Y, Z,W ) = −K(p)G(X,Y, Z,W ).

Thus the condition for a Riemannian manifold to be wandering at p is

Rijkl(p) = −K(p)(gikgjl − gilgjk)(p),

or
Ωij(p) = −K(p) · θi ∧ θj(p),

where θi = gijdu
j .

Definition 4.3.3 If M is a Riemannian manifold which is wandering at
every point and the sectional curvature K(p) is a constant function on M ,
then M is called a constant curvature space.

Theorem 4.3.2 (F. Schur’s Theorem) Suppose M is a connected m-
dimensional Riemannian manifold that is everywhere wandering. If m ≥ 3,
then M is a constant curvature space.

Proof. Since M is wandering everywhere, it holds that

Ωij = −Kθi ∧ θj ,

where K is a smooth function on M , and θi = gijdu
j . Exterior differentia-

tion yields

dΩij = −dK ∧ θi ∧ θj −Kdθi ∧ θj +Kθi ∧ dθj .

However,

dθi = dgij ∧ duj = (gikω
k
j + gkjω

k
i ) ∧ duj = (ωij + ωji) ∧ duj ,

where
ωij = gjkω

k
i = Γijkdu

k.

Since the Levi-Civita connection is torsion-free, we have

ωji ∧ duj = Γjikdu
k ∧ duj = 0,

and hence
dθi = ωij ∧ duj = ωj

i ∧ θj .
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On the other hand, by the Bianchi identity,

dΩij = d
Ä
Ωl
iglj
ä

= dΩl
i · glj +Ωl

i ∧ dglj

=
Ä
ωk
i ∧ Ωl

k − Ωk
i ∧ ωl

k

ä
glj +Ωl

i ∧ (ωlj + ωjl)

= ωk
i ∧ Ωkj +Ωk

i ∧ ωjk

= ωk
i ∧ Ωkj +Ωik ∧ ωk

j .

Thus

dΩij = −Kωk
i ∧ θk ∧ θj −Kθi ∧ θk ∧ ωk

j = −Kdθi ∧ θj +Kθi ∧ dθj .

We then obtain
dK ∧ θi ∧ θj = 0.

Since {θi} and {dui} are both local coframes, we may assume that dK =
akθk. Since m ≥ 3, we have

akθ1 ∧ · · · ∧ θm = (−1)k−1dK ∧ θ1 ∧ · · · ∧ “θk ∧ · · · ∧ θm = 0, 1 ≤ k ≤ m.

Hence dK = 0. Since M is a connected manifold, K is a constant function
on M .

4.4 The Gauss-Bonnet Theorem

SupposeM is an oriented 2-dimensional Riemannian manifold. If we choose
a smooth frame field {e1, e2} in a coordinate neighborhood U whose orien-
tation is consistent with that ofM , with coframe {θ1, θ2}, then the Rieman-
nian metric is

ds2 = gijθ
iθj , 1 ≤ i, j ≤ 2,

where gij = G(ei, ej). By the Fundamental Theorem of Riemannian Geom-

etry, there exists a unique set of differential 1-forms θji such that

dθi − θj ∧ θij = 0, dgij = gikθ
k
j + gkjθ

k
i .

The θji define the Levi-Civita connection on M by

Dei = θji ej .

The curvature form for the connection is

Ωj
i = dθji − θki ∧ θjk.
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Let Ωij = Ωk
i gkj , then Ωij is skew-symmetric. Since the indices i, j only take

the values 1 and 2, the only nonzero element in the curvature form Ωij is
Ω12.

Let Ω denote the curvatre matrix (Ωj
i ) and write

G =

Å
g11 g12
g21 g22

ã
.

If (e′1, e
′
2) is another local frame field in a coordinate neighborhood W ⊂M

with orientation consistent with that ofM , then in U∩W , when U∩W ̸= ∅,Å
e′1
e′2

ã
= A ·

Å
e1
e2

ã
,

where

A =

Å
a11 a21
a12 a22

ã
, detA > 0.

Let G′ and Ω′ denote the corresponding quantities with respect to the frame
field (e′1, e

′
2). Then

G′ = A ·G ·AT , Ω′ = A ·G ·A−1.

Therefore
Ω′ ·G′ = A · (Ω ·G) ·AT ,

i.e. Å
0 Ω′

12

−Ω′
12 0

ã
=

Å
a11 a21
a12 a22

ãÅ
0 Ω12

−Ω12 0

ãÅ
a11 a12
a21 a22

ã
.

Thus
Ω′
12 = (a11a

2
2 − a21a

1
2)Ω12 = (detA) · Ω12.

We also have

g′ = detG′ = (detA)2 · detG = (detA)2 · g.

Hence
Ω′
12√
g′

=
Ω12√
g
.

In the other words, Ω12/
√
g is independent of the choice of the orientation-

consistent local frame field, and is therefore an exterior differential 2-form
defined on the whole manifold. If we choose a local coordinate system ui

with the same orientation as M , and {e1, e2} is the natural basis, then

Ω12 =
1

2
R12kldu

k ∧ dul = R1212du
1 ∧ du2.
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Thus
Ω12√
g
=
R1212

g
· √gdu1 ∧ du2 = −Kdσ,

where K is the Gauss curvature of M and dσ =
√
gdu1∧du2 is the oriented

area element of M .
If {e1, e2} is an orthogonal local frame field with an orientation consistent

with that of M , then
g = g11g22 − g212 = 1.

Thus
Kdσ = −Ω12.

On the other hand,
Ω12 = dθ12 + θi1 ∧ θ2i.

The skew-symmetry of θji implies that

Ω12 = dθ12,

where θ12 = De1 · e2. It then follows that

Kdσ = −dθ12.

As long as there exists a smooth orthogonal frame field {e1, e2} with an
orientation consistent with M in an open subset U ⊂ M , then there exists
a connection form θ12 on U , and hence the above formula holds.

On an oriented 2-dimensional Riemannian manifold, a smooth orthogo-
nal frame field with an orientation consistent with that of M corresponds to
a tangent vector field that is never zero. In fact, the tangent vector e2 in the
frame {e1, e2} is obtained by rotating e1 by π/2 according to the orienta-
tion of M . Therefore an orthogonal frame field {e1, e2} with an orientation
consistent with that of M is equivalent to the unit tangent vector field e1.

A null point of a tangent vector field is called a singular point. Assume
that there is a smooth vector fieldX on U that has exactly one singular point
p, i.e. Xq ̸= 0 whenever q ∈ U − {p}. Then there is a smooth unit tangent
vector field

a1 =
X

|X|
which determines an orthogonal frame field {e1, e2} with an orientation con-
sistent with that ofM in U−{p}. Therefore, if {e1, e2} is a given orthogonal
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frame field on U that is also orientation-consistent with M , then we may
assume that

a1 = e1 cosα+ e2 sinα,

a2 = −e1 sinα+ e2 cosα,

where α = ∠(e1, a1) is the oriented angle from e1 to a1. Although α is a
multi-valued function, the difference between two values of α is an integer
multiple of 2π at every point. Thus there always exists a continuous branch
of α in a neighborhood of any point. The single-valued function obtained
from this branch is smooth in the neighborhood. Let

ω12 = Da1 · a2,

then direct calculation yields that

ω12 = dα+ θ12.

Suppose D is a simply connected domain containing the point p whose
boundary is a smooth simple closed curve C = ∂D. Then C has a induced
orientation of M . Suppose the arc length parameter of C is s, 0 ≤ s ≤ L,
and the direction along the curve as s increases is the same as the induced
direction of C. So C(0) = C(L). Since C is compact, it can be covered by
finitely many neighborhoods, and there exists a continuous branch of α in
each neighborhood. Therefore, there exists a continuous function

α = α(s), 0 ≤ s ≤ L

on C. By the Fundamental Theorem of Calculus we have

α(L)− α(0) =

∫ L

0
dα.

Since α(L) and α(0) are the angles between the tangent vectors a1 and e1
at the same point C(0) = C(L), the left hand side is an integer multiple of
2π, and is independent of the choice of the continuous branch of α(s). It is
also independent of the choice of the frame field {e1, e2}.

The value of

α(L)− α(0) =

∫ L

0
dα

given above is also independent of the choice of the simple closed curve C
surrounding the point p. Suppose there is another simply connected domain
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D1 ⊂ D̊ containing p. Let C1 = ∂D1. Then D − D1 is a domain with
boundary in M , and its boundary with induced orientation is C − C1. By
the Stokes’ Formula, we have∫

C−C1

dα =

∫
C−C1

ω12 −
∫
C−C1

θ12

=

∫
C−C1

ω12 −
∫
D−D1

dθ12

=

∫
C−C1

ω12 +

∫
D−D1

Kdσ.

The right hand side is independent of the choice of the frame field {e1, e2}
on D − D1. Hence we may assume that ei = ai, i = 1, 2. Then the right
hand side vanishes and hence ∫

C−C1

dα = 0,

or equivalently, ∫
C
dα =

∫
C1

dα.

Definition 4.4.1 Suppose X is a smooth tangent vector field with an
isolated singular point p, and U is a coordinate neighborhood of p such that
p is the only singular point of X in U . Then the integer

Ip =
1

2π
[α(L)− α(0)] =

1

2π

∫
C
dα,

obtained by the above construction is independent of the choice of the simple
closed curve C surrounding p, and the choice of the frame field {e1, e2} on
U . It is called the index of the tangent vector field X at the point p.

Integrating
ω12 = dα+ θ12

over C we obtain

1

2π

∫
C
ω12 =

1

2π

∫
C
dα− 1

2π

∫
D
Kdσ.

Since the Gauss curvature is continuous at p, when D is shrunk to a point,
the integral

1

2π

∫
D
Kdσ → 0.
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However, the integral
1

2π

∫
C
dα

is exactly the constant Ip. Hence we have

Ip =
1

2π
lim
C→p

∫
C
ω12.

Theorem 4.4.1 (Gauss-Bonnet Theorem) Suppose M is a compact
oriented 2-dimensional Riemannian manifold. Then

1

2π

∫
M
Kdσ = χ(M),

where χ(M) is the Euler characteristic of M .

Proof. Choose a smooth tangent vector field X on M with only finitely
many isolated singular points pi, 1 ≤ i ≤ r. For each pi, we choose a ε-
ball neighborhood Di, where ε is a sufficiently small positive number such
that pi is the only singular point of X in Di. Let Ci = ∂Di, then Ci is
a simple closed curve with induced orientation from M on Di. Thus the
tangent vector field X determines a smooth orthogonal frame field {e1, e2}
on M −

⋃
iDi that is orientation consistent, with e1 = X/|X|. Suppose

θ12 = De1 · e2. On M −
⋃

iDi, we have

dθ12 = Ω12 = −Kdσ.

Also, by the Stokes’ Formula,∫
M−

⋃
i Di

Kdσ = −
∫
M−

⋃
i Di

dθ12 =

r∑
i=1

∫
Ci

θ12.

Since the frame field {e1, e2} is actually well-defined on M − {pi, 1 ≤ i ≤
r}, the equation still holds as ε → 0. Also, since K is a continuously
differentiable function defined on the whole M , we have

lim
ε→0

∫
M−

⋃
i Di

Kdσ =

∫
M
Kdσ.

Noting that we also have

lim
ε→0

r∑
i=1

∫
Ci

θ12 = 2π
r∑

i=1

Ipi ,
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it follows that
1

2π

∫
M
Kdσ =

r∑
i=1

Ipi .

Since the left hand side is independent of the tangent vector field X, we
may construct a special one as follows. Choose a triangulation of M with
f faces, e edges and v vertices. Then we can construct a smooth tangent
vector field X such that the center of mass of each face, the midpoint of
each edge, and each vertex is a singular point, whose index is +1, -1, and
+1, respectively. For this tangent vector we have

r∑
i=1

Ipi = f − e+ v = χ(M).

Hence
1

2π

∫
M
Kdσ = χ(M).

The above proof also implies the Hopf’s Index Theorem below.

Theorem 4.4.2 (Hopf’s Index Theorem) Suppose there is a smooth
tangent vector field on a compact oriented 2-dimensional Riemannian man-
ifold with finitely many singular points. Then the sum of its indices at the
various singular points is equal to the Euler characteristic of the manifold.

Suppose C is a smooth curve onM , and a1 is a unit tangent vector to C.
Choose a unit normal vector a2 to C such that the orientation determined
by {a1, a2} is consistent with that of M . Since Da1 is colinear with a2, we
may assume

κg =
Da1
ds

· a2.

κg is called the geodesic curvature of C. A necessary and sufficient con-
dition for C to be a geodesic curve is

κg ≡ 0.

SupposeD is a compact domain with boundary in an oriented 2-dimensional
Riemannian manifold M whose boundary ∂D is composed of finitely many
piecewise smooth simple closed curves with induced orientation from D.
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Suppose the interior angle of ∂D at each vertex pi is αi, 1 ≤ i ≤ l. By the
similar method we can prove the Gauss-Bonnet Formula

l∑
i=1

(π − αi)−
∫
∂D

κgds+

∫
D
Kdσ = 2π · χ(D),

where κg is the geodesic curvature along ∂D. If D is a geodesic triangle
in M , and ∂D is a closed curve composed of three geodesic segments, then
χ(D) = 1 and therefore

α1 + α2 + α3 − π =

∫
D
Kdσ.

5 Lie Groups

5.1 Lie Groups

Definition 5.1.1 Let G be a nonempty set. If

1. G is a group;

2. G is an r-dimensional smooth manifold; and

3. the inverse map τ : G→ G such that τ(g) = g−1 and the multiplication
map φ : G × G → G such that φ(g1, g2) = g1 · g2 are both smooth
maps,

then G is called an r-dimensional Lie group.

Since τ2 = id : G → G, τ is a diffeomorphism from G to itself. For
ginG, the right translation by g on G is Rg : G → G such that Rg(x) =
φ(x, g) = x · g, and the left translation is Lg : G→ G such that

Lg(x) = φ(g, x) = g · x.

Since the inverse of Lg is Lg−1 and the inverse of Rg is Rg−1 , Lg and Rg are
both diffeomorphisms from G to itself.

If G1, G2 are Lie groups, then the product manifold G1 × G2 can also
be viewed as the product of groups. Therefore G1 ×G2 is also a Lie group,
called the direct product of the Lie groups G1 and G2.

Example 5.1.1 GL(n;R) is the set of nondegenerate n× n real matrices
with matrix multiplication for its group operation. Since GL(n;R) is an
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open subset of Rn2
, it has the differentiable structure induced from Rn2

.
Suppose

A = (Aj
i ), B = (Bj

i ) ∈ GL(n;R).

Then
(A ·B)ji = Ak

iB
j
k.

Since the right hand side is a polynomial of the elements of the matrices A
and B, the map

φ(A,B) = A ·B
is smooth. Moreover, since the elements of A−1 are rational functions of
the elements Aj

i , the inverse map is also smooth. Hence GL(n;R) is an
n2-dimensional Lie group, called the general linear group. Similarly the
multiplicative group GL(n;C) of nondegenerate n × n complex matrices is
a 2n2-dimensional Lie group.

Example 5.1.2 Suppose G is a Lie group and H is a subgroup of G. If
H is regular submanifold of G, then it can be shown that the restrictions of
the multiplicaiton map and the inverse map, namely

φ|H×H : H ×H → H, τ |H : H → H,

are both smooth.
Suppose

SL(n;R) = {A ∈ GL(n;R) | detA = 1}
and

O(n;R) = {A ∈ GL(n;R) | A ·AT = I}.
Then SL(n;R) and O(n;R) are both subgroups and regular submanifolds of
GL(n;R). Therefore they are Lie groups. SL(n;R) and O(n;R) are called
the special linear group and the real orthogonal group, respectively.

Suppose G is an r-dimensional Lie group with identity e. Since for every
a ∈ G, the map Ra−1 is a diffeomorphism from G to itself that takes a to
e, the tangent map (Ra−1)∗ : Ga → Ge is a linear isomorphism, where Ga is
the tangent space of G at a. Suppose X ∈ Ga. Let

ω(X) = (Ra−1)∗X.

Then ω is a differential 1-form defined on G with values in Ge, called the
right fundamental differential form or Maurer-Cartan form of the
Lie group G. If we choose a basis δi, 1 ≤ i ≤ r for Ge, then we may write

ω = ωiδi,
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where ωi, 1 ≤ i ≤ r are r differential 1-forms on G that are linearly inde-
pendent everywhere.

Choose a local coordinate system (U ;xi) and (W ; yi) at points e and
a, respectively. When U is sufficiently small, there exists a neighborhood
W1 ⊂W of a such that φ(U ×W1) ⊂W . Choose

δi =
∂

∂xi

∣∣∣∣
e

and let
φi(x, y) = yi ◦ φ(x, y), (x, y) ∈ U ×W1.

Then the isomorphism (Ra)∗ : Ge → Ga is given as

(Ra)∗δi =
∂φj(x, a)

∂xi

∣∣∣∣
x=e

· ∂

∂yj

∣∣∣∣
a

.

Because
(Ra−1)∗ ◦ (Ra)∗ = id : Ge → Ge,

we have

(Ra−1)∗
∂

∂yi

∣∣∣∣
a

= Λj
i (a)δj ,

Where (Λj
i (a)) is the inverse matrix of ((∂φi(x, a)/∂yj)x=e). Therefore

ωi = Λi
j(a) · dyj ,

hence ωi is a smooth differential 1-form.

Theorem 5.1.1 Suppose σ : G → G is a smooth map. If σ is a right
translation of the Lie group G, then it preserves the right fundamental
differential form, i.e.,

σ∗ωi = ωi, 1 ≤ i ≤ r.

Proof. Suppose σ is the right translation Rx for some x ∈ G. Then for any
X ∈ Ga we have

((Rx)
∗ω)(X) = ω((Rx)∗X)

= (R(ax)−1)∗ ◦ (Rx)∗X

= (Ra−1)∗X

= ω(X).

Hence
(Rx)∗ω = ω.
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Because d◦σ∗ = σ∗ ◦d holds for any smooth map σ : G→ G, dωi is still
invariant under right-translation. Let

dωi = −1

2
cijkω

j ∧ ωk,

where
cijk + cikj = 0.

Because ωi and dωi are both right-invariant, the cijk are constants, called
the structure constants of the Lie group. The above equation is called the
structure equation or the Maurer-Cartan equation of the Lie group
G.

Theorem 5.1.2 The structure constants cijk satisfy the Jacobi identity

cijkc
j
hl + cijhc

j
lk + cijlc

j
kh = 0.

Proof. Exteriorly differentiating

dωi = −1

2
cijkω

j ∧ ωk,

we get

0 = −1

2
cijk(dω

j ∧ ωk − ωj ∧ dωk)

=
1

2
cijkc

j
hlω

h ∧ ωl ∧ ωk

=
1

6
(cijkc

j
hl + cijhc

j
lk + cijlc

j
kh)ω

h ∧ ωl ∧ ωk.

The terms inside the parentheses are skew-symmetric with respect to k, h, l.
Hence the Jacobi identity follows.

Definition 5.1.2 Suppose X is a smooth tangent vector field on a Lie
group G. If, for any a ∈ G, we have

(Ra)∗X = X,

then we say that the tangent vector field X is a right-invariant vector
field on G.
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Choose an arbitrary tangent vector Xe ∈ Ge, and let Xa = (Ra)∗Xe for
each a ∈ G. Then we obtain a smooth tangent vector field X on G. For any
a, x ∈ G, we have

(Rx)∗Xa = (Rx)∗ ◦ (Ra)∗Xe = (Rax)∗Xe = Xax,

hence X is right-invariant. Let Xi denote the right-invariant vector field
obtained by the right translation of δi ∈ Ge. Then the Xi, 1 ≤ i ≤ r are
tangent vector fields which are linearly independent everywhere on G, and
any right-invariant vector field on G can be expressed as a linear combina-
tion of the Xi with constant coefficients. Hence the set of right-invariant
vector fields on G forms an r-dimensional vector space, denoted by G, and
is isomorphic to Ge.

By the construction of Xi we have

ω(Xi) = δi,

that is,
ωj(Xi) = ⟨Xi, ω

j⟩ = δji .

Thus the fundamental differential forms ωi, 1 ≤ i ≤ r and the right-invariant
vector fields Xj , 1 ≤ j ≤ r constitute sets of mutually dual coframe fields
and frame fields, respectively, on the Lie group G. Therefore a tangent
vector field X on G is right-invariant if and only if the value of the right
fundamental form on X is constant.

Theorem 5.1.3 If X,Y are right-invariant vector fields on G, then [X,Y ]
is also a right-invariant vector field on G.

Proof. First we have

⟨X ∧ Y,dωi⟩ = X⟨Y, ωi⟩ − Y ⟨X,ωi⟩ − ⟨[X,Y ], ωi⟩

from Lemma 3.1.3. From the structure equation we obtain

⟨X ∧ Y, dωi⟩ = −1

2
cijk⟨X ∧ Y, ωj ∧ ωk⟩ = −cijkωj(X)ωk(Y ).

Since X,Y are both right-invariant vector fields, we have ωj(X), ωk(Y ) are
both constant. Therefore

ωi([X,Y ]) = cijkω
j(X)ωk(Y )

is also constant. This implies that [X,Y ] is right-invariant.
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The Poisson bracket is then closed in G and defines a multiplication
operation on G, which satisfies the following conditions:

1. Distributive Law: [a1X1 + a2X2, Y ] = a1[X1, Y ] + a2[X2, Y ];

2. Skew-symmetric Law: [X,Y ] = −[Y,X];

3. Jacobi Identity: [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

If an n-dimensional real vector space has a multiplication operation satis-
fying the distributive law, the skew-symmetric law and the Jacobi identity,
then we call it an n-dimensional Lie algebra. Then vector space G of all
right-invariant vector fields on a Lie group G is an r-dimensional Lie algebra,
called the Lie algebra of the Lie group G.

The structure constants of a Lie group provide the multiplication table
for its Lie algebra G. In fact, by the proof of the Theorem 5.1.3, we have

ωi([Xj , Xk]) = cijk,

and then
[Xj , Xk] = cijkXi.

The skew-symmetry of the structure constants cijk with respect to the lower
indices and the Jacobi identity satisfied by these constants correspond to
the skew-symmetry of the Poisson bracket and its Jacobi identity. Thus if
we let

[δj , δk] = cijkδi,

then Ge also becomes an r-dimensional Lie algebra, and Ge and G are iso-
morphic as Lie algebras. Usually the Lie algebra Ge is also called the Lie
algebra of the Lie group G.

Example 5.1.3 Suppose A = (Aj
i ) ∈ GL(n;R). Then Aj

i , 1 ≤ i, j ≤ n is

a coordinate system on the manifold GL(n;R), and then dAj
i , 1 ≤ i, j ≤ n

gives a coframe field on GL(n;R). The right fundamental differential form
of GL(n;R) can be written as

ω = dA ·A−1.

Exterior differentiation then yields

dω = −dA ∧ dA−1 = −(dA ·A−1) ∧ (A · dA−1)

= (dA ·A−1) ∧ (dA ·A−1) = ω ∧ ω.
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Let gl(n;R) denote the tangent space at the identity element I in the
Lie group GL(n;R). It is the n2-dimensional vector space with n × n real
matrices as its elements. In this representation, gl(n;R) has a basis Ej

i , 1 ≤
i, j ≤ n, where Ej

i denote the n× n matrix with the value 1 for the element
at the intersection of the j-th row and the i-th column, and 0 for other
entries. Hence we may write

ω = ωj
iE

i
j = (ωj

i ).

From
dω = ω ∧ ω

we have

dωj
i = ωk

i ∧ ωj
k =

1

2
(δpi δ

j
qδ

r
s − δri δ

j
sδ

p
q )ω

s
p ∧ ωq

r .

Hence the structure constants of the Lie group GL(n;R) are

c
(i,j)
(p,s)(r,q) = −δpi δ

j
qδ

r
s + δri δ

j
sδ

p
q .

The multiplication table for the Lie algebra gl(n;R) is then

[Ep
s , E

r
q ] = δpqE

r
s − δrsE

p
q = Er

q · Ep
s − Ep

s · Er
q .

Suppose A,B ∈ gl(n;R), then the above formula implies that

[A,B] = B ·A−A ·B.

Definition 5.1.3 Suppose G,H are two Lie groups. If there is a smooth
map f : H → G which is also a homomorphism between the groups, then
f is called a homomorphism of Lie groups from H to G. If f is also a
diffeomorphism, then it is called an isomorphism of Lie groups from H to
G.

Theorem 5.1.4 Suppose f : H → G is a Lie group homomorphism, then
f induces a homomorphism f∗ : H → G between the Lie algebras. If f
is a Lie group isomorphism, then f∗ is an isomorphism betweeen the Lie
algebras.

Proof. Let f∗ denote the tangent map of the smooth map f . First we show
that f∗ maps the right-invariant vector fields of the Lie group H to the
right-invariant vector fields of the Lie group G. Choose any Xe ∈ He, and
let Ye′ = f∗Xe ∈ Ge′ , where e is the identity element of H and e′ = f(e)
is the identity element of G. Let X,Y be the right-invariant vector fields
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generated by Xe, Ye′ on their respective Lie groups. Then for any a ∈ H,
we have

f∗Xa = f∗ ◦ (Ra)∗Xe = (Ra′)∗ ◦ f∗Xe = (Ra′)∗Ye′ = Ya′ ,

where a′ = f(a) ∈ G. Thus the image of a right-invariant vector fields on
H under f∗ can be extended to a right-invariant vector field on G. Use
the notation f∗ : H → G for this correspondence. Since the tangent map
f∗ commutes with the Poisson bracket product of vector fields. Hence f∗ :
H → G defined above is a homomorphism between Lie algebras.

When f is an isomorphism between Lie groups, f∗ is also invertible and
hence is an isomorphism between Lie algebras.

Suppose G is an r-dimensional Lie group. A homomorphism from the
Lie group G to GL(n;R) is called a representation of order n of the Lie
group G. A natural representation of order r for each r-dimensional Lie
group can be defined as follows.

Suppose x ∈ G, and let

αx(g) = x · g · x−1 = Lx ◦Rx−1(g).

Then αx is an automorphism of the Lie group G, called the inner automor-
phism of G. The tangent map (αx)∗ of αx determines an automorphism
of the Lie algebra Ge. Let Ad(x) = (αx)∗ : Ge → Ge, then Ad(x) is a
nondegenerate linear transformation on the linear space Ge, and is therefore
an element of GL(r;R). Hence we obtain a map Ad : G → GL(r;R). It
can be verified that Ad is a homomorphism between groups. If we use local
coordinates, Ad is given by smooth functions of the local coordinates, hence
Ad is a homomorphism between Lie groups.

Definition 5.1.4 The Lie group homomorphism Ad : G→ GL(r;R) given
above is called the adjoint representation of the Lie group G.

The tangent map of the adjoint representation Ad : G → GL(r;R) in-
duces a homomorphism ad from the Lie algebra Ge to gl(r;R), called the
adjoint representation of the Lie algebra Ge of the Lie group G. Since
gl(r;R) can be viewed as a set of linear transformations on Ge, the adjoint
representation ad actually assigns to each X ∈ Ge a linear transformation
ad(X) on Ge.

88



References

[1] S. S. Chern, W. H. Chen, and K. S. Lam. Lectures on Differential
Geometry. World Scientific, 2000.

89


