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This document is the study note of the book [1].

1 Differentiable Manifolds

1.1 Tangent Spaces

Suppose M is an m-dimensional smooth manifold. Fix a point p € M.
Denote the set of all C™ functions defined in a neighborhood of p by Cp°.
Define a relation ~ in C}° as follows. Suppose f,g € C;°. Then f ~ g if
and only if there exists an open neighborhood H of the point p such that
flg = glu. Obviously ~ is an equivalence relation in C7°. The equivalence
class of f is denoted by [f], called a C*°-germ at p on M. Let

Fp =G/ ~=Al11f e}

Then F, is a linear space over R with regular addition and scalar multipli-
cation.

For a parametrized curve v in M through a point p, there exists a positive
number ¢ such that v : (=9,d) — M is C* with v(0) = p. Denote the set
of all these parametrized curves by I',,.

We introduce a pairing between I',, and F, by letting

oty = 2D

t=0

for each v € I', and [f] € F,. This pairing is well-defined and linear in the
second variable. Let

Hp:{[f] EFP’(V’U‘D:O’V’}/EFP}

be a linear subspace of F),.



Theorem 1.1.1 Suppose [f] € F,. For a chart (U, ¢), let F = fop~! be
a function from an open subset of R™ to R. Then [f] € H, if and only if

OF

Tl (p)

Definition 1.1.1 The quotient space F,/H,, is called the cotangent space
of M at p, denoted by T,y or T;(M). The H,-equivalence class of the C°°-
germ [f] is denoted by (df)p,, called a cotangent vector on M at p.

The cotangent space T is a linear space with the linear structure induced
from F,.

Theorem 1.1.2 Suppose f!, f%,---,f% € Cp° and Fly',y%,--- ,y°%) is a
smooth function in a neighborhood of (f!(p), f2(p),---, f*(p)) € R*. Then

fZF(fl,fQ,---,fs)GCgo and

@ =3 (25020 ) @,

k=1

Corollary 1.1.3 For any f,g € C;°,a € R, we have

L (d(f +9))p = (df)p + (dg)p,
2. (d(af))p =a-(df)p, and
3. (d(f9))p = f(p) - (dg)p + 9(p) - (df)p-

Choose a chart (U, ¢) and define local coordinates u’ by u’(p) = (¢(p))’ =
2t 0 ¢(p),p € U, where 2 is the standard coordinate system of R™. Then
= C’go and (dui)p € T;, 1 <i<m. Choose A\ € I'),1 <k < m such that

u' o A\ (t) = u'(p) + Sit.

Then we have

. d . .
e, [w]) = (o X(t))] =3}
t=0
Theorem 1.1.4 {(du’),,1 < i < m} is a basis of T}, called the natural
basis of T} with respect to the local coordinate system u?. Tt then follows
that dim7,; = m.



Proof. By Theorem 1.1.2, for each f € Cp°, (df), is a linear combination of
the (du®),, 1 <i < m.
If there exist real numbers a;, 1 < i < m such that

m

Z ai(dui)P - 07

i=1
then for any v € I',, we have

i . Ui d(u® o ~y(t
<%Zaiw]> - weatd) o,

i=1 =0

Let v = A, and we will obtain ax = 0,1 < k < m, i.e. {(du’),,1 <i<m}
is linearly independent. Therefore it forms a basis for 7. O

We can simply define the pairing between I';, and T} by

(v, (df)p) = (. [fD)

for each v € I'p and (df), € T, after the definition of H,, and T;;. Define a
relation ~ on Iy as follows. Suppose 7,7" € I'p,. Then y ~ +/ if and only if
for any (df), € T,

(v, (df)p) = (s (df)p)-

This is again an equivalence relation. Denote the equivalence class of + by
[7]. We can then define

(0], (df)p) = (v, (df)p)
without chance of confusion.

Theorem 1.1.5 The ([y],-),y € T', represent the totality of linear func-
tionals on 7 and form its dual space, T), called the tangent space of M
at p. Elements of the tangent space are called tangent vectors of M at p.

Proof. Suppose « is a linear functional on Tj;. Let ¢ = a(dut),, 1 <i<m.
Choose v € I', such that

u'(t) = u'(p) + &'t

Then

mo 0wl
(@) =3 ¢ 22— oy,

»(p)




Therefore each linear functional on T} can be expressed as ([7],-) for some
v € I'y. Moreover, if ([v],-) and ([y'],-) are the same linear functionals on
T, then [y] = [y]. Therefore, we can identify the space of [y],y € ', with
the dual space of T};. O

The pairing (X, (df)p), X = [v] € Tp, (df), € T, is a bilinear map from
T, x T,y to R. Noting that

<[)‘k]7 (dul)p> = 5127 1<i,k<m,

{[M],1 < k < m} is the basis of T}, dual to the basis {(du’),1 <i < m} of
T;. The tangent vectors can also be seen as functions from C}° to R. For a
general f € C}°, we have

(Il (@1)) <Aki[(au> | >]>=(a@£>

=1 p

where (0f /0u’), means (3(fop™1)/02"), (). Thus the [A¢] can be identified
with the partial differential operators (0/ 8u )p on the space Cp°. The basis
{(8/0u*),,1 < k < m} is called the natural basis of T, with respect to
the local coordinate system u’.

The lower index p of tangent and cotangent vectors can be suppressed
for simplicity if there is no chance of confusion.

Definition 1.1.2 Suppose X € T, f € C;°. Then (df), € T, is called
the differential of f at the point p. Denote X f = (X,df), then Xf is
called the directional derivative of the function f along the vector X.

Theorem 1.1.6 Suppose X € T, f,g € C))°,a, f € R. Then
L X(af + Bg) =aX f+ BXg;
2. X(fg) = f(p)X(9) +9(p)X(g)-

The above properties of tangent vectors also give an alternative definition
of tangent vectors.

Smooth maps between smooth manifolds induce linear maps between
tangent spaces and between cotangent spaces. Suppose F': M — N is a
smooth map, p € M,q = F(p) € N. Define the map F™* : Ty (N) — T, (M)
by F*(df) = d(f o F),df € T;(N). This is a well-defined linear map,
called the differential of the map F'. The adjoint of F*, namely the map
F, :T,(M) — T,(N) given by

(FX,a) = (X, F*a), X €T,(M),aecT;(N),



is called the tangent map induced by F'
Suppose u* and v* are local coordinates near p and g, respectively. Then
the map F can be expressed near p by the functions

Foul, - u™) =v*o F(u', - ,u™), 1<a<n.
Then the action of F* on the natural basis {(dv®),1 < a < n} is given by

F*(dv®) =dF* =) (aaz; ) - du’
i p

1=

Hence the matrix representation of F* in the natural bases {dv®} and {du’}
is exactly the Jacobian matrix ((0F®/9u"),). Similarly, the action of F, on
the natural basis {9/0u’,1 < i < m} is given by

(5 () 07) = (g 77 (@)

Z %if" ) (o)
(ai- p
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<§;(6£§> (2) ).
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i.e.

Therefore the matrix representation of Fl in the natural bases {0/0u‘} and
{0/0v*} is still the Jacobian matrix ((OF*/du’)y,).

1.2 Submanifolds

Using the Inverse Function Theorem for R™ and the local coordinate systems
of manifolds, we can obtain the following generalization for manifolds.



Theorem 1.2.1 Suppose M and N are both n-dimensional smooth man-
ifolds, and f : M — N is a smooth map. If at a point p € M, the tangent
map fi : Tp(M) — Ty (N) is an isomorphism, then there exists a neigh-
borhood U of p in M such that V = f(U) is a neighborhood of f(p) in N
and f|y : U — V is a diffeomorphism.

If M is an m-dimensional manifold and N an n-dimensional manifold,
f M — N is smooth, and the tangent map f is injective at a point p, then
f« is said to be nondegenerate at p. In this case, we have m < n, and the
rank of the Jacobian matrix of f at p is m.

Theorem 1.2.2 Suppose M is an m-dimensional manifold and N an n-
dimensional manifold, m < n. If f: M — N is a smooth map and the
tangent map f, is nondegenerate at a point p in M, then there exist lo-
cal coordinate systems (U;u’) near p and (V;v%) near ¢ = f(p) such that
f(U) =V, and the map f|y can be expressed by local coordinates as

v (f(x)) = u'(z), 1<i<m;
v(f(z)) =0, m+1<y<n
for each x € U.

Proof. Take local coordinate systems (U;u?) and (V;v®) at p and g, respec-
tively, such that u’(p) = 0 and v*(q) = 0. Since f. is nondegenerate at p,
we may assume that

8(f17f27'”7fm) 7&0
8(u1,u2,~' 7um) wi=0 '
Let In_p = {(w™ oo w™) | [w| < 6,m+1 < v < n}, where J is a

sufficiently small positive number. By suitably shrinking the neighborhood
U, we can define a smooth map f: U x I,,_,, — V such that

fi(ula"' 7um’wm+1,“_ ’,wn) :fi(ula"' 7um>7 1 SZS’I’I’L,
f’y(ul’_” 7um’wm+17”_ ’wn):ww_‘_f’y(ul’__. ,Um), m+1 <~v<n.

The Jacobian matrix of f at (u,w?) = (0,0) is nondegenerate. It follows
by Theorem 1.2.1 that f is a diffeomorphism ina neighborhood of (0,0). We
may assume that f: U X I,_m, — V is a diffeomorphism. Then there exists
a coordinate system v in the neighborhood V of ¢ such that f is expressed
as

ﬁi( (ulv_‘_’umvwm—&—l’_”,wn)):ui’ 1§Z§m7

o f Lo,

7( (u um,wm+1,"',wn)):w7, m+1<~y<n.



Thus the local coordinate systems (U;u’) and (V;9%) are the desired. [

Definition 1.2.1 Suppose M and N are smooth manifolds. If there is a
smooth map ¢ : M — N such that the tangent map ¢, : Ty,(M) — T, (N)
is nondegenerate at any point p € M, then ¢ is called an immersion,
and (p, M) an immersed submanifold of N. Furthermore, if ¢ is also
injective, then (¢, M) is called a smooth submanifold, or imbedded
submanifold, of N.

By Theorem 1.2.2, an immersion is locally injective, but not necessarily
so globally.

Example 1.2.1 Suppose U is an open subset of N. By restricting the
smooth structure of N to U, we obtain a smooth structure on U, which
makes U a smooth manifold with the same dimension as N. Let ¢ : U — N
be the inclusion map, then (¢, U) becomes an imbedded submanifold of NV,
called an open submanifold of V.

Example 1.2.2 Suppose (¢, M) is a smooth submanifold of N. If
1. (M) is a closed subset of N;

2. for any point ¢ € (M), there exists a local coordinate system (U;u’)
such that (M) NU is defined by

um+l:u = =U =

where m = dim M,
then we call (¢, M) a closed submanifold of N.

For an imbedded submanifold (¢, M), since ¢ is injective, the differen-
tiable structure of M can be transported to ¢(M), making ¢ : M — o(M)
a diffcomorphism. On the other hand, being a subset of N, ¢(M) has an
induced topology from N. The topology on ¢(M) obtained from M through
 is not necessarily the same as the one induced from N.

Definition 1.2.2 Suppose (¢, M) is a smooth submanifold of N. If ¢ :
M — (M) C N is a homeomorphism, then (p, M) is called a regular
submanifold of N, and ¢ is called a regular imbedding of M into N.

Theorem 1.2.3 Suppose (¢, M) is an m-dimensional submanifold of an
n-dimensional smooth manifold of N. Then (¢, M) is a regular submanifold
of N if and only if it is a closed submanifold of an open submanifold of V.



Proof. First we show that a closed submanifold (¢, M) of N is a regular
submanifold. Choose an arbitrary point p € M. There exists a local coor-
dinate system (V;v%) at the point ¢ = ¢(p) in N such that (M) NV is
defined by

Since ¢ is continuous, there exists a local coordinate system (U;u’) such
that o(U) C V. We may assume that u’(p) = 0,v%(q) = 0, and V =
{(vt, -+ ,v™) | |v®| < &}, where § is a positive number. Thus ¢(U) C
e(M)NV.

The goal is to prove that ¢=!: (M) C N — M is also continuous. The
map |y can be expressed locally by

vi=p(ul, - u™), 1<i<my
V=0, m+1<~vy<n.

Since @, is nondegenerate at p, the Jacobian

8(¢17¢27"' 7g0m)
I(ut,u?, - um) | i,

By the Inverse Function Theorem, there exists §; with 0 < §; <  such that
there is an inverse function set

ut = Q/Ji(vl,--- ;™) |’UZ| <0

of the function set (¢!, ---,¢™). Let Vi = {(v',---,v") | [v¥ < 61},
then the entire preimage of ¢(M) NV under ¢ is contained in U. Hence
¢ : M — ¢(M) C N is a homeomorphism, which implies that (¢, M) is a
regular submanifold of V.

Conversely, suppose (¢, M) is a regular submanifold of N. Let p € M.
Then for any neighborhood U C M of p, there exists a neighborhood V
of ¢ = ¢(p) in N such that ¢(U) = (M) N V. By Theorem 1.2.2, there
exist local coordinate systems (Up;u') for p and (Vi;v®) for ¢ such that
©(Ur) C Vi, and ¢|y, can be expressed in local coordinates as

We may assume that U; C U. Hence we can choose V; C V with ¢(U;) =
©(M) N Vy. Here we can see that ¢(M) NV is actually defined by



For each q € ¢(M), use V; to represent the corresponding neighborhood
Vi of ¢ in N defined above. Let W = Uchp(M) V4. It is obvious that W is
an open submanifold of N containing ¢(M). We only need to show that
w(M) is relatively closed in W, or equivalently, ¢(M)NW = ¢(M). Choose
any point s € (M) N W. Then there exists ¢ € (M) such that s € V.
By the choice of V;, (M) NV, is a relatively closed subset of V;. Since
s € p(M)NVy, we have s € p(M)NV,. Therefore o(M)NW C ¢(M). This
proves that (¢, M) is a closed submanifold of the open submanifold W of
N. O

Theorem 1.2.4 Suppose (¢, M) is a submanifold of a smooth manifold
N. If M is compact, then ¢ : M — N is a regular imbedding.

Proof. Because ¢ : M — (M) C N is a continuous bijection from a
compact space to a Hausdorff space, it must be a closed map and then
a homeomorphism. Therefore, (¢, M) is a regular submanifold of N by
definition. O

2 Exterior Differential Calculus

2.1 Tensor Bundles and Vector Bundles

Suppose M is an m-dimensional smooth manifold, T}, and T} are the tangent
and cotangent space of M at p. Then there is an (7, s)-type tensor space

TI(p) =T, @ @ T,T; @ @ T

7 terms s terms

of M at p, which is an m"T*-dimensional vector space. Let

0= {J T ().

peEM

We will introduce a topology on 77 so that it becomes a Hausdorff space
with a countable basis, and then define a smooth structure to make it a
smooth manifold.

Suppose V is an m-dimensional vector space over R. Choose a basis
{e1,€2, -+ e} in V, and then each element y € V' can be expressed as a
row coordinate vector

y= vy y™).



The space VI of all (r, s)-type tensors on V has a basis
iy @eip @ e, e @@ et 1<y, 5 < m.

Thus the elements of V" can also be expressed by components.

Consider a coordinate neighborhood U on M with local coordinates

ul,--- ,u™. Then for any p € U,

- . dud? duds 1< ig, <
<3u“ @@ gy ) B @@ du)y, 1<ia,js <m
forms a basis of T7 (p). We can define a map

ou U x V] = | TI(p)
peU

such that for any p € U, 1 < i,, jg < m, we have
(pU<pae’L‘1 X cc €4, ®6*j1 X - ..e*js>

_8> ...(8) Ny @ @ (dud r
_(auil (@00 () © )86 [@ih), € T)

Such a oy is a one-to-one correspondence.

Choose a coordinate covering {Uy,Us,---} of M, with corresponding
maps {1, 2, -+ }. Let the set of images of all open subsets of U; x VI
under the map ¢; be a topological basis for 7. Such a topology makes 17
into a Hausdorff space with a countable basis, and each map ¢; is then a
homeomorphism.

Fix a point p € U. The map ¢y, : Vi — T (p) defined by

vup(y) =vulpy), yeVi

is a linear isomorphism. If W is another coordinate neighborhood of M
containing p, let
guw (p) = ey, 0 pup : Vi — Vi

Then obviously guyw (p) € GL(V]'). Therefore, for any two coordinate neigh-
borhoods U, W of M with U N W # &, the map

gow :UNW — GL(VST)

is well-defined. Moreover, it can be shown that gy is actually some tensor
products of the Jacobian matrix of the change of local coordinates, thus
guw is smooth on U N W.

10



Now we construct the smooth structure of 77 . First,

{p1(Ur x V), 02Uz x V), -+ }

forms an open covering of 77. The coordinates of a point ¢;(p,y) in the
coordinate neighborhood ¢;(U; x V) are

(uf(p), yi o),

where u$* is a local coordinate in the coordinate neighborhood U; of the
manifold M, and yx;g is the component of y € V. with respect to the
basis e;;, ® ---€;, ® e @ ---e*s of V. Noting that for U; N U; # @,
gij : Uy NU; — GL(V]) is smooth, we see that the coordinate covering of
T! given above is C*°-compatible. Thus 77 becomes a smooth manifold.

Obviously, the natural projection
m: T, — M,

which maps each element in 77 (p) to the point p € M, is a smooth surjection.
The smooth manifold 77 is called a type (r, s)-tensor bundle on M, 7 is
called the bundle projection, and 77 (p) is called the fiber of the bundle
T7 at p.

Letting = 1,5 = 0, we get the tangent bundle of M, denoted by
T(M). Letting r = 0,s = 1, we get the cotangent bundle of M, denoted
by T%(M). Replacing T"(p) by A"(T}) and V" by A"(V'), and following the

above procedure, we can construct exterior vector bundles

AT (M) = AN(T,)
peEM

on M. Similarly, we can also construct exterior form bundles

AT(MF) = | AT
peEM
on M.

Suppose f : M — T! is a smooth map such that 7 o f = idyy, ie.,
f(p) € TI(p) for any p € M, then f is called a smooth section of the
tensor bundle 77, or a type (r,s)-smooth tensor field on M. A section
of a tangent bundle is a tangent vector field on M, and a section of a
cotangent bundle is a differential 1-form. A smooth section of the exterior
form bundle A"(Mx) is called an exterior differential form of degree r
on M.

11



Definition 2.1.1 Suppose E, M are two smooth manifolds, and « : & —
M is a smooth surjection. Let V be a ¢-dimensional vector space. If an
open covering {Uy, Us, - -} of M and a set of maps {@1, @9, - - } satisty the
following conditions:

1. Every map ¢; is a diffeomorphism from U; x V to 7#~1(U;), and for
any pe U,yeV,
™o wi(p,y) = p.

2. For any fixed p € U;, let

vip(y) = vilp,y), yeV.

Then ¢;,, : V — 7~ 1(p) is a homeomorphism. When U; N U; # &, for
any p € U; NUj,
9ii(p) = ;0 0ip: V>V
is a linear automorphism of V, i.e. g;;(p) € GL(V).
3. When U; NU; # @, the map g¢;; : Uy N U; = GL(V) is smooth.

then (E, M, ) is called a (real) g-dimensional vector bundle on M, where
FE is called the bundle space, M is called the base space, 7 is called the
bundle projection, and V is called the typical fiber.

For any p € M, define E, = 7~ 1(p) and call it the fiber of the vector
bundle E at the point p. For a coordinate neighborhood U; of M contain-
ing p, the linear structure of the typical fiber V' can be transported to E,
through the map ;). Condition 2 ensures that the linear structure of E,
is independent of the choice of U; and ;.

The product manifold M x V is the most simple example of a vector
bundle, called the trivial bundle over M, or the product bundle.

The map g;; : Uy N U; — GL(V) satisfies the following compatibility
conditions:

L. for p € U;, gii(p) = idy;
2. if pe U;NU; NU, # @, then g;(p) o gjx(p) © gij(p) = idy .

The set {gi;} is called the family of transition functions of the vector
bundle (E, M, ).

12



Theorem 2.1.1 Suppose M is an m-dimensional smooth manifold, {U, }aea
is an open covering of M, and V is a ¢g-dimensional vector space. If for any
pair of indices o, 8 € A where U, N Ug # &, there exists a smooth map
9ap : Uo NUg — GL(V) that satisfies compatibility conditions, then there
exists a g-dimensional vector bundle (E, M, 7) which has {g.g} as its tran-
sition functions.

For a vector bundle (E, M, 7) with V" as its typical fiber, we can construct
another vector bundle (E*, M, 7) with V* as its typical fiber, whose tran-
sition functions are the dual maps of the transition functions of (E, M, ).
The vector bundle E* is called the dual bundle of E. In fact, the cotangent
bundle is exactly the dual bundle of the tangent bundle. Similarly, we can
construct the direct sum and the tensor product of vector bundles.

Definition 2.1.2 Suppose s : M — E is a smooth map. If 7 o s = idjy,
then s is called a smooth section of the vector bundle (E, M, ). The set
of all smooth sections of the vector bundle (E, M, ) is denoted by I'(E).

Suppose s, 51,82 € I'(E) and o € C°(M). For any p € M, let

(s1+ s2)(p)
(as)(p)

Then s1 + s9 and as are also smooth sections of the vector bundle E. This
makes I['(E) into a C°°(M )-module.

s1(p) + s2(p),
a(p)s(p).

2.2 Exterior Differentiation

Suppose M is an m-dimensional smooth manifold. Let
A" (M) =T(A"(M7))

be the space of the smooth sections of the exterior form bundle A"(M™*).
The elements of A"(M) are called exterior differential r-forms on M.

Similarly, let
A(M) = T(A(M7))

be the space of all the smooth sections of the vector bundle A(M*). The
elements of A(M) are called exterior differential forms on M. A(M) has
the expression as the direct sum

AM) =" A™(M).



The wedge product A defines a map
A AT(M) x AS(M) — A"™"5(M)
for each 7, s which makes A(M) into a graded algebra.

Lemma 2.2.1 Suppose (U, ) is a coordinate chart in a smooth manifold
M,V # & is an open set in M with V compact, and V C U. Then there
exists a smooth function h : M — R such that

1.0<h<1;

1, peV;
2. hip) =

0, pgU.

Theorem 2.2.2 Suppose M is an m-dimensional smooth manifold. Then
there exists a unique map

d: A(M) — A(M)

such that d(A"(M)) c A" (M) and such that it satisfies the following
properties:

1. For any wi,ws € A(M), d(w1 —i—(,UQ) = dwy + dws.
2. Suppose wy € A"(M), then for any wy € A(M),

d(w1 A CL)Q) =dwi Awy + (—l)rwl A dws.
3. If f is a smooth function on M, i.e. f € A°(M), then df is precisely
the differential of f.
4. If f € A°(M), then d(df) = 0.
The map d defined above is called the exterior derivative.

Proof. First we show that id the exterior operator d exists, then it is a local
operator. It suffices to show that w|y = 0 implies (dw)|y = 0. Choose any
point p € U. Then there is an open neighborhood W containing p such that
peW C W C U. By Lemma 2.2.1, there exists a smooth function h on M

such that
1, peW,
h(p') =
0, pgU

14



Thus hw € A(M) and hw = 0. Therefore
dh Aw+ hdw =0,

and hence (dw)|w = 0. The arbitrarity of p then implies that the restriction
of dw in U must be zero.

Suppose w is an exterior differential form defined on the open set U.
Using Lemma 2.2.1, for any point p € U, there is a coordinate neighborhood
Uy C U of p and an exterior differential form & defined on M such that
®|v, = w|y,- Thus we can define d@|;;, = dw|y,. Since d is a local operator,
the above definition is independent of the choice of ©. dw is therefore well-
defined.

Now we show the uniqueness of the exterior derivative d within a lo-
cal coordinate neighborhood. We only need to show this for a monomial.
Suppose in a coordinate neighborhood U, w is expressed by

w=adu' A Adu”,
where a is a smooth function on U. By the properties of d, we see that
dw=daAndu' A Adu”,

where da is the differential of the function a. Thus dw restricted to the
coordinate neighborhood U has a completely determined form.
Suppose
w|U = ail...iy,duil Ao Adut

Then we can define
d(w|r) = dagy i, Adu™ A=+ Adu'.

Obviously, d(w|y) is an exterior differential (r + 1)-form on U satisfying
conditions 1 and 3. To show that 2 holds, we need only consider any two
monomials

a; = adu®™ A - Adul
Qg = bdudt A -+ A dudr.
By the definition, we have
d(ar A ag) = d(ab) Adu A--- Adu Adu?t A--- A dud”
= (adb + bda) A du® A --- Adu™ Adu?t A - A dud”
= (da Adu't A--- Adu®) A (bdu?t A - A dudT)
+ (=) (adu™ A--- Adu™) A (db A du?t A --- A du'T)
=dag Ao + (1) a1 A das.

15



Property 2 is therefore established.
We now prove condition 4. Suppose f is a smooth function on M. Then
on U it satisfies
of . i
-du’.

df = out

Since f is C*°, its higher then first order partial derivatives are independent
of the order taken, i.e.,

0% f B 0% f
outoul  Quidut’
Therefore
_ 3f> ;
d(df)=d (aw‘ A du
Pf
= S du’ A du
1 0% f 0% f ) j i
T2 <8ui8uj C ouwiout du’ A du
=0.

If W is another coordinate neighborhood, we obtain by the local property
of the exterior derivative operator and its uniqueness in a local coordinate
neighborhood that

(d(wlo)lvaw = d(wlvaw) = (d(wlw))lvnw

Hence the exterior derivative operator d is uniformly defined above on UNW |
i.e. d is an operator defined on M globally. This proves the existence of the
operator d satisfying the conditions of the theorem. O

Theorem 2.2.3 (Poincare’s Lemma) For any exterior differential form
w, d(dw) = 0.

Proof. Since d is a linear operator, we need only prove the lemma when w
is a monomial. By the local properties of d, it suffices to assume that

w=adu' A---Adu".

Hence
dw=daAdu' A---du”.
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Differentiating one more time and applying conditions 2 and 4, we have

d(dw) = d(da) Adu* A--- A du”
—dand(du) A Adu” + -
= 0.
O

Suppose f : M — N is a smooth map from a smooth manifold M to
a smooth manifold N. Then f induces a tangent mapping f. : T,(M) —
Tty (N) at every point p € M. For w € A%(N), define

ffw=wo fe AM).

For w e A"(N),r > 1, let f*w be an element of A" (M) such that for any r
smooth tangent vector fields X1, Xo, -+, X, on M,

(X1 A X A AN Xy, frwhp = (XTI A fiXa Ao A f X0 w) iy P E M,

p)>

where (-, ) can be computed by

< 6' /ARERWAN 8' Jdut A A dujr> = §Irdr,
outt ou'r p

Under this definition, the map f* distributes over the wedge product, i.e.
frlwAn) =ffwnfn wneAN).

Theorem 2.2.4 Suppose M, N are smooth manifold and f: M — N is a
smooth map. Then the following diagram commutes:

A(N) —— A(N)

lf* I

Proof. We can prove the equation f*(dw) = d(f*w) for monomials w by
induction on its degree. O
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2.3 Integrals of Differential Forms

Definition 2.3.1 An m-dimensional smooth manifold M is called ori-
entable if there exists a continuous and nonvanishing exterior differential
m-form w on M. If M is given such an w, then M is said to be oriented.
If two such forms are given on M such that they differ by a function factor
which is always positive, then we say that they assign the same orientation
to M.

If w,n are two exterior differential m-forms giving orientations to M,
then there exists a nonvanishing continuous function f such that n = fw.
When M is connected, f retains the same sign on the whole M. Therefore
the orientation given by 7 is either identical to the one given by w or the
one given by —w. This implies that there exist exactly two orientations on
a connected orientable manifold.

Suppose M is oriented by the exterior differential form w, and (U;u?) is
any local coordinate system on M. Then du' A --- A du™ and w|y are the
same up to a nonzero factor. If the factor is positive, then (U;u') is said to
be a coordinate system consistent with the orientation of M.

Definition 2.3.2 Suppose f : M — R is a real function on M. The
support of f is the closure of the set of points at which f is nonzero, i.e.

supp f = {p € M | f(p) # 0}.

If ¢ is an exterior differential form, the the support of ¢ is

supp ¢ = {p € M | ¢(p) # 0}.

Definition 2.3.3 Suppose ¥ is an open covering of M. If every compact
subset of M intersects only finitely many elements of Yg, then X is called
a locally finite open covering of M.

Theorem 2.3.1 Suppose ¥ is a topological basis of the manifold M. Then
there is a subset ¥ of X such that ¥ is a locally finite open covering of M.

Proof. The second countability of M suggests that there exists a countable
open covering {U;} of M such that the closure U; of every U; is compact.
Let

18



then P; is compact, P; C P;4+1 and

o0
UB:M
=1

Now we inductively construct another sequence of compact sets ); satisfying
PCQ; C Qi“ for each i. Let Qg = &. Assuming that Qq, - ,Q;—1 have
been constructed, we are going to construct @;. Since @;—1 U P; is compact,
there exist finitely many elements U,, 1 < a < s of {U;} such that

Qi-1UP; C U Ua.

a=1
Let
S
Qi = U Ua)
a=1
then @; satisfies P,_1 C Q;_1 C QZ and P; C @Q;. Obviously we also have
(o]
U Qi =M.
i=1

Denote Q1 = @ and let
Li=Qi—Qi-1, Ki=Qis1— Qi

for each positive integer i. Then L; is compact, K; is open, and L; C K.
Since X is a topological basis of M, K; can be expressed as a union of
elements of . These elements form an open covering of L;, and hence there
exist finitely many elements V; o,1 < o < r; in ¥ such that

T
L, C U Vi,a C K;

a=1

for each 7. Because

8

00
=1 =1

we see that
Yo=A{Via, 1 <a<r,i>1}

is a subcovering of X.
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To show the local finiteness, we consider an arbitrary compact set A.
There exists a sufficiently large integer ¢ such that A C P, C ;. For
j=i+2,

Kj=Qjs1—Qj—2 C Qjt1 — Qi
thus
ANVjo CQiNK;j =2, 1<a<r;.
Therefore only finitely many elements of ¥ intersect A. O

Theorem 2.3.2 (Partition of Unity Theorem) Suppose ¥ is an open
covering of a smooth manifold M. Then there exists a family of smooth
functions {go} on M satisfying the following conditions:

1. 0 < g, <1, and supp g, is compact for each . Moreover, there exists
an open set W; C X such that supp go, C Wi;

2. For each point p € M, there is a neighborhood U of p that intersects
Supp g, for only finitely many «;

3. > 000 =1

The family {g,} is called a partition of unity subordinate to the open
covering 3.

Proof. Because M is a manifold, there is a topological basis X9 = {U,} such
that each U, is a coordinate neighborhood, U,, is compact, and there exists
W; € ¥ such that U, C W;. By Theorem 2.3.1, we may assume that g
itself is a locally finite open covering of M with countably many elements.

For each U,, we construct V,, by a contraction of U, such that V,, C U,
and {V,} is also an open covering for M. Let

W, = U U;.
£

Then M —W, is a closed set contained in U, and hence U,. The compactness
of U, implies that M — W, is also compact. Thus there are finitely many
coordinate neighborhoods W, 5,1 < s < r, such that W, s C U, and

M= Wa € | Was

s=1

Now let .
Voc = U Wms,
s=1
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then the V,, are as desired.
By Lemma 2.2.1, there exist smooth functions h, with 0 < h, < 1 on

M such that
17 JIS Va;
ha(p) =
0, pgUs.

Then supp ho C U,. For any point p € M, there exists a neighborhood U
such that U is compact. The local finiteness of ¥ implies that U intersects
only finitely many elements of Yy, and there are only finitely many nonzero
terms in the summation ) ho(p). Thus h =) h, defines a smooth func-
tion on M. Since {V,} covers M, any point p € M must lie in some V,,, and
thus h(p) > ha(p) = 1. Let go = ha/h, then the family {g,} satisfies all the
conditions of the theorem. O

Suppose M is an m-dimensional smooth manifold, and ¢ is an exterior
differential m-form on M with a compact support. Choose any coordinate
covering ¥ = {W;} which is consistent with the orientation of M, and
suppose that {g,} is a partition of unity subordinate to 3. Then ¢ =
Y a(ga - ) and supp (ga - @) is contained in some coordinate neighborhood
W; € 3. Suppose u',--- ,u™ is a coordinate system of W;, with respect to
which g, - ¢ has the expression as

flul, - u™)dut Ao A du™.

The integral of g, - ¢ is then defined to be

/ga.wz/ ga.spz/ f(ul,---,um)dul---dum,
M W; Wi

where the right hand side is the usual Riemann integral.
We need to show that the right hand side is independent of the choice of

the coordinate system (Wj;ul,---,u™). Suppose supp (go - ¢) C W; N W;,

where W;, W, have the local coordinates u®, v* consistent with the orienta-

tion of M, respectively. The the Jacobian satisfies

a(U17 e ’Um)

/= a(ula"' ’um)

> 0.

Suppose g - ¢ is expressed in W; and W, respectively, by

Go - @ = fdul Ao A du™
= fdo' Ao AdO™.
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Then we have

and supp f = supp f = supp (ga - @) C Wi N W;. Therefore

/ fdv1-~-dvm:/ fdot- - do™
Wj WiﬂWj
:/ f-J|dut - du™
WiﬂW]'

= / fdut .- du™
WiﬁWj

= fdul---du™,
W;

i.e. the integral of g, - v on M is well-defined.
Since supp ¢ is compact, it only intersects finitely many supp g,. Let

LS

Now we show that the right hand side is independent of the choice of the par-
tition of unity {gn}. Suppose {gg} is another partition of unity subordinate
to 2. Then

%:/Méﬁ‘@:azﬁ:/Mga-éﬁ'w
Y [ Yasegae
o M B
:za:/Mga'@'

/M 2

is well-defined, and is called the integral of the exterior differential form ¢
on M.

If ¢ is an exterior differential r-form, r < m, with compact support, then
we can define the integral of ¢ on any r-dimensional submanifold N of M.
Suppose h: N — M is an r-dimensional imbedding of N into M. Then h*y
is an exterior differential r-form on the r-dimensional smooth manifold N

In conclusion, the value of
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with compact support. The integral of ¢ on the submanifold h(N) of M is

then defined as
L= L
h(N) N

2.4 Stokes’ Formula

Definition 2.4.1 Suppose M is an m-dimensional smooth manifold. A
region D with boundary is a subset of M with two kinds of points:

1. Interior points, each of which has a neighborhood in M contained in
D.

2. Boundary points, for each of which there is a coordinate system (U; u®)
such that u'(p) = 0 and

UND={qeU|u"(q) >0}

A coordinate system u’ with the above property is called an adapted co-
ordinate system for the boundary point p. The set B of all the boundary
points of D is called the boundary of D.

Theorem 2.4.1 The boundary B of a region D is a regular imbedded
closed submanifold. Furthermore, if M is orientable, then B is also ori-
entable.

Proof. The boundary B of the region D is a closed subset of M. Suppose
(U;u?) is an adapted coordinate neighborhood, then

UNB={qeU]|u"(q) =0}

Thus B is a regular imbedded closed submanifold of M.

Now suppose M is an orientable manifold. Choose an adapted coordinate
neighborhood (U;u’) which is consistent with the orientation of M at an
arbitrary point p € B. Then (ul,--- ,u4™™1) is a local coordinate system of
B at the point p. Let

(—=1)™du! Ao A du™?

specify the orientation of the boundary B in the coordinate neighborhood
U N B of the point p.
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Suppose (V; %) is another adapted coordinate neighborhood of the bound-
ary point p consistent with the orietation of M. Then

a(v17 e ,Um)

o)

Moreover, the sign of v is the same as that of 4™, and v = 0 holds
whenever u™ = (0. This means that

m
O o 1<i<m-1,
ou* |,
and that
o™
NG >0
U g
for any ¢ € U NV N B. Therefore
ovt. ... om1
(v, o) >0
a(ul,_,, 7um—l)

holds within U NV N B. This shows that (—1)"du! A --- A du™~! and
(—=1)™dvt A---Adv™ ! give consistent orientations in U NV N B. Therefore,
the orientation given by (—1)™dul A--- Adu™"!in U N B can be extended
to the whole boundary B. Hence B is orientable. O

The orientation of B given in the proof is called the induced orien-
tation on the boundary B by an oriented manifold M. If D has the same
orientation as M, we denote the boundary B with the induced orientation
by 0D.

Theorem 2.4.2 (Stokes’ Formula) Suppose D is a region with bound-
ary in an m-dimensional oriented manifold M, and w is an exterior differ-
ential (m — 1)-form on M with compact support. Then

/dw:/ w.
D oD

If 0D = @, then the integral on the right hand side is zero.

Proof. Suppose {U;} is a coordinate covering consistent with the orientation
of M, and {g,} is a subordinate partition of unity. Then

w:Zga-w.
(03
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The right hand side is a sum of finitely many terms since supp w is compact.

Therefore
dw = / d(ga - w),
/| > [ aaee)

w = o - W.
Ji =2

Thus we may assume that supp w is contained in a coordinate neighborhood
(U;u") consistent with the orientation of M.
Suppose w can be expressed as

and

m
w= z:(—l)j_lajdu1 A Adut Ao Adu™,
j=1

where the a; are smooth functions on U. Then

m
60,]‘

ouJ

j=1

dw = dul A< A du™.

Case 1: If UNOD = @, then

/ w=0.
oD

Then either U C M — D or U is contained in the interior of D. We only
need to consider the latter one. Consider a cube

C={uecR™| || <K 1<i<m}

such that the image of U under coordinate maps is contained in the interior
of C. The functions a; can be smoothly extended to C' by letting them be
zero outside U. Noting that

K da. . . .
/ —Ldu! = aj(ul,'-- T K u ™)
oul
K
1 j—1 i+1 m
—a](u’--.’u] ’—K’u] ’..-’u )

=0,
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we have

aa] 1. 80’] 1. ™
/ oul s 1 / oud s Y

|uw<Kz¢a K Oul

for each j, and hence

/dw—/ 8a] du' - du™ = 0.
8u3

Case 2: If UNOD # @, we may assume that U is an adapted coordinate
neighborhood consistent with the orientation of M. Then

UND={qeU|u"(q) >0}

and
UNoD ={qeU|u"(q) =0}
Consider the cube

C:{ueRm\umZO,]uﬂSK,lSigm}

such that the image of U N D under coordinate maps is contained in the
union of the interior of C' and the boundary «” = 0. Noting that du™ = 0
on U N 9D, we have

oD UnoD

m
Z(l)j_l/ ajdut Ao Adut A A du™

.

= (-1)m! / amdut A - A du™ !
UnoD

= —/ am(ut, -+ ™t 0)dut - - - du™ L
[ut|>K,1<i<m

On the other hand, since

/ 9% 4l A - /\dum:/ aa]d i) dul - dud - du™
UnD ouJ | Z‘<K2<m17£] 8U]
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for 1 <j <m —1, we have

/ dw:/ dw
D unbD

—Z/ G qut A A du™
= Junp 0W

:/ aa—mdul/\---/\dum
vUnp Ou™

K
= / ( aanldum) d’U,l . -dum’1
[ut|>K,1<i<m 0 oum

= /| ! [am(u17 . ,Um_l, K) _ am(u1’ . ,’U/m_l, 0)]du1 . dum_l
u|>K,1<i<m

:—/ am(ut, - u™ L 0)dut - - du™ L
[ut|>K,1<i<m

In conclusion, we have
/ dw = / w,
D oD

and the theorem is proved. O

We can view A"(M) as a cochain group with d : A"(M) — A™H(M)
being the coboundary operator. Denote

Z"(M,R) ={we A"(M) | dw = 0}

and
B"(M,R) = {w € A" (M) | w = dn for some n € A" 1(M)}.

The elements of Z"(M,R) are called closed differential forms and the ele-
ments of B"(M,R) are called exact differential forms. Poincare’s Lemma
thus implies that B"(M,R) C Z"(M,R).

Definition 2.4.2 The quotient space
H"(M,R)=Z"(M,R)/B"(M,R)

is called the r-th de Rham cohomology group of M.
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Any smooth map f: M — N induces a homomorphism
ffAY(N) — A"(M)

which commutes with the coboundary operator d. Such a map f* is called
a chain map. It can be easily proved that f* provides a homomorphism
from Z"(N,R) to Z"(M,R) and that from B"(N,R) to B"(M,R). Hence f*
induces a homomorphism between the de Rham groups

F5: H"(N,R) — H"(M,R).

3 Connections

3.1 Connections on Vector Bundles
Definition 3.1.1 A connection on a vector bundle E is a map
D:T(F) -T(T"(M)® E)
which satisfies the following conditions:
1. For any s1,s2 € I'(E), D(s1 + s2) = Ds; + Dso.
2. For s € I'(E) and any o € C*®(M), D(as) = da ® s + aDs.

Suppose X is a smooth tangent vector field on M and s € I'(E). Let
Dxs = (X, Ds),

then Dxs is a section on F, called the absolute differential quotient or
the covariant derivative of the section s along X.

Condition 2 for connections implies that D(As) = ADs for any A € R,
hence D is a linear map from I'(E) to I'(T*(M) ® E). The operator D also
has the local property that if the restriction of a section s to an open set
U C M is zero, then Ds|y = 0. By the definition of absolute differential
quotient, it can be shown that for any smooth tangent vector fields X,Y on
M, sections s, s1,s2 of E, and a € C*°(M), we have

1. Dx4+vs=Dxs+ Dys;
2. Doxs =aDxs;

3. Dx(s1+ s2) = Dxs1 + Dxso;

28



4. Dx(as) = (Xa)s + aDxs.

Suppose U is a coordinate neighborhood of M with local coordinates
u?,1 < i < m. Choose ¢ smooth sections s,,1 < a < ¢ of E on U such that
they are linearly independent everywhere. Such a set of sections is called a
local frame field of F on U. At every point p € U,

{du' @ sq,1 <i<m,1<a<q}

forms a basis for the tensor space T; @ Ej. Since Ds,, is a local section on
U of the bundle T*(M) ® E, we can write

Ds, = ngdui ® sg,

where ng are smooth functions on U and the Einstein summation conven-
tion is adopted for the indices 7 and 8. Denote

wh = F'gidui,

then we have

Dsy = wP ® sp.
Let S = (s1, -+ ,8¢) andw = (wg), then the above equation can be written
as
DS=w®S.

The matrix w is called the connection matrix, which depends on the choice
of the local frame field S.
It s = (sf,--- ,sé)T is another local frame field on U, then we may
assume that
S'=A-8,
or equivalently, '
si = ajs;,

where A = (af ) is a nondegenerate matrix of smooth functions. Suppose

the matrix of the connection D with respect to the local frame field S’ is w'.
Then we have

DS’ =D(A-S)
=dA® S+ A-DS
=(dA+A-w)eSs
=dA- AT +Aw-ATHes.
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It follows that
W=dA- A"+ A w-A7Y

or equivalently,
WoA=dA+ A w.

Conversely, suppose a coordinate covering {U;} is chosen for M. On
each U; fix a local frame field S; of E and assign a ¢ X ¢ matrix w; of
differential 1-forms which satisfies the transformation formula above when
the corresponding coordinate neighborhoods intersect. Then there exists a
connection D on E whose matrix representation on each member U; of the
coordinate covering is exactly w;.

Theorem 3.1.1 A connection always exists on a vector bundle.

Proof. Choose a coordinate covering {Uy}aeca of M. We may assume that
there is a local frame field S, for any U,. We need only construct a ¢ x ¢
matrix w, on each U, such that the matrices constructed satisfy the trans-
formation formula under a change of local frame field.

By Theorem 2.3.1 and the Partition of Unity Theorem, we may assume
that {U,} is locally finite and {g4} is a corresponding subordinate partition
of unity such that supp go C Uy. When U, NUg # @, there naturally exists
a nondegenerate matrix A,g of smooth functions on U, N Ug such that

S = Aaﬂ . Sﬁ.

For every a € A choose an arbitrary ¢ X ¢ matrix ¢, of differential 1-forms
on U,. Let

wa= Y, gp-(dAag-Ays+ Aag- 05 AL})
UaﬂUB;ﬁz

be another matrix of differential 1-forms on U,. When U, NUg N U, # @,
we have

Aap - Apy = Aay
in the intersection. Thus on U, N Ug # @, we have

Aap - wp - Agg = Z 9y Aag - (AApy - At + Agy - - Agl) - A
UaNUgNU#2
= Z 9y - (dAay — dAgg - Apy + Aay - @y) - A%l : Agﬂl
UaNUpNU~#2

. —1
= wo — dAag - AL

This is precisely the transformation formula. O
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Theorem 3.1.2 Suppose D is a connection on a vector bundle F and
p € M. Then there exists a local frame field S in a coordinate neighborhood
of p such that the corresponding connection matrix w is zero at p.

Proof. Choose a coordinate neighborhood (U;u?) of p such that u’(p) =

0,1 < ¢ < m. Suppose S’ is a local frame field on U with corresponding

connection matrix w’ = (w/f ), where wl = Ffidui, and the Ffﬂ- are smooth

functions on U. Let ‘
of = 53— TE) o

Then A = (ag) is the identity matrix at p. Hence there exists a neighborhood
V C U of p such that A is nondegenerate in V. Thus

S=A.95
is a local frame field on V. Noting that
da? = —F’fi(p) -du,

we have
dA(p) = —'(p),

and hence

w(p) = dA(p) - A7 (p) + A(p) - ' (p) - A~} (p) = dA(p) + ' (p) = 0.

Exteriorly differentiating the formula
WA=dA+ A w
once, we obtain
dw' A—w' AdA=A dw+dAAw.

Using the formula
dA=uw' - A—-A- w,

we then have
(do' — ' AW) A=A (dw — w Aw).

If we let
Q=dw—-—wAw,

then the above equation can be written as

OV =A4.-Q- AL
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Definition 3.1.2 The matrix = dw — w A w of differential 2-forms is
called the curvature matrix of the connection D on U.

Choose any two tangent vectors X,,,Y, € T,(M),p € U. Suppose s, €
E,. Using the local frame field Sy = (s1,---,84)T of the vector bundle E
on U, s, can be expressed as

Sp = A%Sq/p.

Then let
R(Xp, Yp)sp = )‘Q<Xp N Yp, Qg|p>35|p~

Noting that (X, A Yp,Qg\p> is actually a (1, 1)-type tensor on the linear
space E,, R(X),Y,) is a linear transformation on E, that is independent of
the choice of local coordinates.

If X,Y are two smooth tangent vector fields on M, then R(X,Y) is a
linear operator on I'(E) given by

(R(X,Y)s)p = R(Xp, Yp)sp
for each s € I'(E),p € M. R(X,Y) has the following properties:
1. R(X,Y) = —R(Y, X);
2. R(fX,)Y)=f-R(X,Y);
3. R(X,Y)(fs) = f- R(X,Y)s,

where X, Y € I'(T'(M)),f € C®(M),s € I'(F). R(X,Y) is called the
curvature operator of the connection D.

Lemma 3.1.3 Suppose w is a differential 1-form on a smooth manifold M
and X,Y are smooth tangent vector fields on M. Then

(XANY,dw) = X(Y,w) —Y(X,w) — ([X,Y],w).

Proof. Since both sides are linear with respect to w, we may assume that w
is a monomial

w=gdf,

where f, g are smooth functions on M. Therefore

dw =dg Adf.
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The left hand side then becomes

(X AY,dw) = (X AY,dg Adf) = (X, dg) =Xg-Yf-Xf Yy

Since
(X,w) = (X, gdf) =9g- X,
we have
YX,w)=Yg - Xf+g Y(Xf)
Similarly,

XY,w)y=Xg-Yf+g-XY[).
Therefore the right hand side is also

X<Kw> _Y<X7w> - <[X7Y}7w>
=Xg-Yf=Yg-Xf+g-(XY[)-Y(X[))—g-(X,Y],df)
=Xg-Yf—X[f-Yyg.

O

Theorem 3.1.4 Suppose X,Y are two arbitrary smooth tangent vector
fields on the smooth manifold M. Then

R(X,Y)=DxDy — DyDx — Dixy].

Proof. We need only consider the operators of both sides on a local section.
Suppose s € I'(E) has the local expression

s = A%,

Then
Dxs = (XA)sq + A*Dxsa = (XA + 3 (X, w8)) sa-

Hence
DyDxs = [V(XA* + A (X,w§)) + (XN + X (X, 0f)) - (V,w§)] 5a
= [Y(XA) + YN (X, wf) + MV (X, wf)
+XN (Y, wg) + N <X, wg> (Y, wm Sa-
It follows that
(DxDy — DyDx)s = [[X, Y]A* + M (X (Y, w§) = ¥ (X, w§)

(i) (X.em) (03 (V)]
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By Lemma 3.1.3, we have
X (Vi) Y (X,u8) = (X AY,duf) + (X, Y],5).
Together with
(X 0¥, ) = (Y.0) (3,08  (05) 7,05),
we further obtain
(DxDy —DyDx)s = [[X,Y]A* + 3 (([X,Y],w§)
+ (X ANY,dw§ — w) Awd))] sa

Dixy)s + A (X AY,Q5) sq
(D[X,Y] + R(X, Y)) S.

That is
R(X,Y) =DxDy — DyDx — Dixy]-

O
Theorem 3.1.5 The curvature matrix {2 satisfies the Bianchi identity
dQ=wAAQ-QAw.
Proof. Applying exterior differentiation to both sides of
Q=dw—wAw,
we obtain

dQ = —-dwAw+wAdw
=—(Q+twAw) Aw+wA(Q+wAw)
=wAQ—-QAw.

O]

Definition 3.1.3 Suppose C is a parametrized curve in M, and X is a
tangent vector field along C. If a section s of the vector bundle E on C
satisfies Dxs = 0, then we say s is parallel along the curve C.
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Suppose the curve C' is given in a local coordinate neighborhood U of
M by
u'=u'(t), 1<i<m.

Then the tangent vector field of C' is
B du’ 9
—dt out’
Let S be a local frame field on U. Then

s = A%,

is a parallel section along C' if and only if it satisfies the system of equations

Dxs = (d>\ +ngdu )\ﬂ) S0 =0,

dt dt

or equivalently, ‘
(0% 1
%—&- giddl;)\ﬁzo, I<a<gq.

By the Fundamental Theorem of Ordinary Differential Equations, there ex-
ists a unique solution for any given initial values. Thus if any vector v € E,
is given at a point p on C, then it determines uniquely a vector field parallel

along C, which is called the parallel displacement of v along C.
A connection D of the vector bundle F induces a connection on the dual

bundle E* given by the equation

d(s,s*) = (Ds, s*) + (s,Ds")

for any s € I'(F), s* € I'(E*). Suppose connections D are separately given
on the vector bundles F; and F», then the equations

D(Sl D 82) = Ds1 @ Dsy
D(Sl & 82) = Ds1 ® Dsy

determine connections on F; @& Fs and E; ® Fs, respectively. These are
called the induced connections on E*, 1 ® Es and E] ® Es, respectively.
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3.2 Affine Connections

A connection on the tangent bundle T'(M) is called an affine connection
on the m-dimensional smooth manifold M. A manifold with a given affine
connection is called an affine connection space.

Suppose M is an m-dimensional affine connection space with a given
affine connection D. Choose any coordinate system (U;u') of M. Then
the natural basis {s; = 9/0u’,1 < i < m} forms a local frame field of the
tangent bundle T'(M) on U. Thus we may assume that

. -
Ds; =w] ® s; =T, du” ® sj,

where ng are smooth functions on U, called the coefficients of the connec-
tion D with respect to the local coordinates u'. Suppose (W;w") is another
coordinate system of M. Let s, = a/awi, 1 <i<m. Then

S = Jwu - S

holds on UNW # @, where Jyy = (0’ /0w?), S’ = (s})T,S = (sj)T. Then
we have

W = dJwr - Ty 4+ Jwo - w - Tk,

or equivalently,

W~ d <8up> owl  ouP 8ij
E T \owt) ouwp T Qwt Que P’
Using the relations

/j o /j k q __ q r
wy =gdw”,  wp =17 .du,

we obtain , ,
i _ e ow’ ouP ou” O*uP  Ouw’

: - + - .
ik PT oug ow' Owk — dwiowk oup
This indicates that ng is not a tensor field on M.
Suppose X is a smooth vector field on M expressed in local coordinates

as 5
X =z,
v ou’
Then 9
DX = (o' + alwj) @ oo = aydu! @ 5o,
where oy
. xl .
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DX is a tensor field of type (1, 1) on M, called the absolute differential
of X.

An affine connection on M induces connections on the cotangent bundle
T*(M) and the tensor bundle T7, respectively. Under coordinates u’, the
local coframe field of the cotangent bundle s** = du’,1 < i < m. By the
definition of the induced connection on the dual bundle, we have

(sj,Ds*) = d(s;, s*") — (Dsj, s*) = d5§- - w;- = —w;
for each 1, 7, hence
Ds* = —w! ® " = T du” @ du.
If a cotangent vector field @ on M is expressed in local coordinates as
a = a;du’,
then '
Da = (do; — ajw]) ® du' = o ;dv’ ® du’,
where
S éai

= i
Da is then a (0, 2)-type tensor field, called the absolute differential of
the cotangent vector field oe. In general, if ¢ is an (r, s)-type tensor field, the

the image of ¢t under the induced connection D is an (7, s 4+ 1)-type tensor
field D¢, called the absolute differential of ¢.

k

Definition 3.2.1 Suppose C : u’ = u(t) is a parametrized curve on M,
and X (t) is a tangent vector field defined on C' given by

X(t) = 2'(t) ( 8?”)0(” :

We say that X (t) is parallel along C' if its absolute differential along C' is
zero, i.e. if

DX
— =0.
dt
If the tangent vectors of a curve C' are parallel along C, then we call C a
self-parallel curve, or a geodesic.
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The equation DX /dt = 0 is equivalent to

at Tk T

This is a system of first-order ordinary differential equations. Thus a given
tangent vector X at any point on C gives rise to a parallel tangent vector
field, called the parallel displacement of X along the curve C.

If C' is a geodesic, then its tangent vector

ro=s0 ()

is parallel along C. Therefore a geodesic curve C should satisfy

d?u’ ;. du/ du”

a2 TR g ar

This is a system of second-order ordinary differential equations. Thus there
exists a unique geodesic through a given point of M which is tangent to a
given tangent vector at that point.

Now consider the curvature matrix 2 of an affine connection. Since

J_ 19 .,k
w; = I du”,

we have
J h j (‘ﬂ’gk . 3 i o .
dw; —w;' Nwy, = 5ul du’ Adu”® — Tyl du’ Adu
1 /o1,  or? . . ) l
T2 (auz B auzlk + 0T, — Ty, ) du® A du’
Therefore .
@ = §nglduk Adut,
where

j o ory  ory
ikl Py k oul

If (W;w") is another coordinate system of M, then

hi h i
+ Tl — Ty,

Q= Jwu Q- Ty
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where ' is the curvature matrix of the connection D under the coordinate
system (W;w"). Therefore

» ouP dw’
QF = g% 9
¢ P ow? Oud
Thus O Sl Bu” B
; P ow’) ou” ou’
R _ pe W 0w ou ou
ikl Prs w't Oud dwk dw!’

where Rgﬁl is determined by

1
Q7 = iR?,ddw’“ A dw'.

If we let 5
R=R, du'® 5.7 © du” @ dd,
then R is independent of the choice of local coordinates, and is called the
curvature tensor of the affine connection.
Suppose X, Y, Z are tangent vector field with local expressions

4 Yy =Y! 9 Z =27 4

X =X_— : = -
out’ out’ out

Then by the definition of the curvature operator, we have

R(X.Y)Z =Z' (X NY, Q) ;uj = R{klzixkyl(;;.

; o 0 > 0 >
j_ j
Rig <R <8uk’ oult /) out’ dw) -

This is the relation between the curvature operator and the curvature tensor.
The connection coefficients I', does not satisfy the transformation rule

Thus

for tensors. But if we define Tfk = Fﬁi — ng, then we have

; ow? OuP Ou”
1j _ g YW il
Tk = Tpr Oud Owt Owk

after the transformation formula for ka Thus

9 .
_7J = 7 k
T—Tikauj@)du ® du
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is a (1, 2)-type tensor, called the torsion tensor of the affine connection
D. T can also be viewed as a map from I'(T'(M)) x I'(T(M)) to T'(T'(M)).
Suppose X,Y are any two tangent vector field on M. Then T'(X,Y) is a
tangent vector field on M with local expression

0

T(X,Y) = T[}Xiij.

It can be verified that
T(X,Y)=DxY —DyX — [X,Y].

Definition 3.2.2 If the torsion tensor of an affine connection D is zero,
then the connection is said to be torsion-free.

If the coefficients of a connection D are sz, then set

1 .
I = §(Fz‘k +T4,)-

The fgk can be the coefficients of some connection D since they satisfy the
transformation formula for connection coefficients, and direct computation
suggests that D is torsion-free. Therefore a torsion-free connection on a
vector bundle always exists. Noting that

. 1 - -
Iy, = _iTijk + T,

we have )
DxZ=T(X,Z)+ DxZ.

This implies that any connection can be decomposed into a sum of a multi-
ple of its torsion tensor and a torsion-free connection. Moreover, since the
geodesic equation of the connection D is equivalent to

et~ du? du®

— t U =
ez ke de 7
a connection D and the corresponding torsion-free connection D have the

same geodesics.

Theorem 3.2.1 Suppose D is a torsion-free affine connection on M. Then
for any point p € M there exists a local coordinate system u' such that the
corresponding connection coefficients ng vanish at p.
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Proof. Suppose (W; w') is a local coordinate system at p with connection
coefficients T, . Let

i =+ A — W () (0 - o)

Then , 5
ou’ ; ou' ;
e T B ()
dw’ T Qwi dwk J
P P
Thus the matrix (Ju’/Ow’) is nondegenerate at p, and then the u’ provide
a local coordinates in a neighborhood of p. Then the connection coefficients

ng in the new coordinate system u’ satisfy
I (p) =0, 1<4,j,k<m.
O

Theorem 3.2.2 Suppose D is a torsion-free affine connection on M. Then
we have the Bianchi identity

J J J _
Rign + Ripe + Bipgy =0,

i
where ngl ;, is determined by the absolute differential of the curvature tensor

R as

DR =R/, ,du" @ du' ® % ® du® @ dul.
’ [

Proof. From Theorem 3.1.5 we have
dQ = wf A QL — QF Aw],

that is

OR! , .
thklduh A du® A dul = (thR;akl - F;hRfkl)duh A du® A dul.

From

] 1 9 k l
R = R}, ,du ®@®du ® du’,
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we obtain

DR
; 0
0 i 9 k l
—I-Rzkldu ®D(8u )®du ® du! +Rzkldu ®w®D(du ) @ du

i 0
+ R, du’ @ 5.7 © du* @ D(du')

)®i®dui®duk®dul,

= (dR},, R R A ~ R Wk — R’ B

1kp
and hence

aRZkl
ouh

FP RJ

J
Rzkl N ikp

—T7 Rjkl + thRfkl r ZhRgpl

Therefore
Ry, dul A duF A dut!

OR}y, j j
- < auzh + T Ry — Th R — th ~T7 R’ka

= — (T}, R, + T Rl

) dul A duF A dut
)du A duf A dul.

The torsion-free property of the connection implies that

thngpduh AduF Adu! = FZkRglpduh AduF Adut = —FihRZplduh AduF Adud,

thus ‘
R}, pduf A du® A du' = 0.

Hence ‘
(Rl nt Rzlh L+ R, )du” Adu® A du! = 0.

Since the coefficients are skew-symmetric with respect to h, k, [, we have

Rsz nt Rzlh gt thkl 0.
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3.3 Connections on Frame Bundles

Suppose M is an m-dimensional differentiable manifold. A frame refers
to a combination of the form (p;e1,--- ,en), where p is a point in M and
e, - ,em are m linearly independent tangent vectors at p. The set of all
frames on M is denoted by P. We now introduce a differentiable structure
on P so that it becomes a smooth manifold, and the natural projection

ﬂ—(p;ela"' aem):p

is a smooth map from P to M. (P, M, ) is then called the frame bundle
of M.

Suppose (U;u') is a coordinate neighborhood of M. Then there is a nat-
ural frame field (9/0ut,---,0/0u™) on U. Hence any frame (p;e1,- - ,em)
on U can be written as

ei:Xf(i> . 1<i<m,

p

where (XF) is a nondegenerate m x m matrix, and therefore an element of
GL(m;R). Thus we can define a map ¢y : U x GL(m;R) — 7~ Y(U) by

5, % ()
ky — [ xF D ¢
ou(p, X)) = (pa X7 (8uk p7 X ouk p)

for any p € U,(XF) € GL(m;R). We can see that ¢y is a one-to-one
correspondence.

Choose a coordinate covering {Uj,Us,---} of M with corresponding
maps {¢1,¢2, -+ }. The images of all the open subsets of U; x GL(m;R)
under the map ¢; form a topological basis for P. With respect to this
topological structure of P, the map ; : U; x GL(m;R) — 7= }(U) is a
homeomorphism.

Through the map ¢;, 7~ (U;) becomes a coordinate neighborhood in P
with local coordinate system (u’,Xlk) Suppose U and W are coordinate
neighborhoods in M such that U N W # &. Then M has the local change
of coordinates

w' =w'(ut, -, u™), 1<i<m
on the intersection U N W. The corresponding natural bases have the fol-
lowing relationship
o ow’ 0
out  Out wi”
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If (p;e1, -+ ,em) is a frame on U N W, then its coordinates (u’, X¥) and
(w, Y¥) under two coordinate systems satisfy

w' = wi(ut, - u™), 1<i<m,
and N
S Ow
k_ yJ :
}/;; —sz, 1§Z,k§m

We can then see that the coordinate neighborhoods 7~1(U) and = 1(W)

are C°°-compatible. Therefore P becomes an (m? +m)-dimensional smooth

manifold, and the natural projection 7 : P — M is a smooth surjection.
For any p € U, let

eup(X) = ou(p, X), X € GL(m;R).

Then ¢y, : GL(m; R) — 77 1(p) is a homeomorphism. If UNW # @, for
p € UNW, the map goa,%p o pup is a homeomorphism from GL(m;R) to
itself. In fact, cpﬁ%p o @u,p is precisely the right translation of the Jacobian
matrix Jyw = (OwF/0u’) on GL(m;R). Thus {Jyw} forms a family of
transition functions on the frame bundle. Therefore the frame bundle P is
a fiber bundle that is not a vector bundle with GL(m;R) as its typical fiber.
Suppose (U;u?) and (W;w') are two coordinate systems on M with the
corresponding coordinate systems (uf, X¥) and (w',Y¥) on P. Use (X;*)
and (Y;**) to denote the inverse matrices of (XF) and (Y}¥), respectively,

that is
XEXY =X*x] =6, Y7 =y =4,

fUNW # @, then on U N W we have

ow'

dw' = W du?.
On the other hand, since .
vi=xi92,
we have _”
X = al; o
Hence )
XPdu' =Y %dui =Y, dwk.
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This implies that the differential 1-form
0" = X;'du

is independent of the choice of local coordinates of P. Therefore §* can be
defined to be a differential 1-form on P.

Now suppose M is an m-dimensional affine connection space with con-
nection D. Suppose the connection matrix of D under the local coordinate
system (U;u’) is w = (w]). Then the absolute differential of the vector field
e; = Xi(0/ou") is

De; = (AXF + X/wh) @ %.

If we view X Zk as independent variables and let
DX} = dX}F + X]uwh,

then DX? is a differential 1-form on the coordinate neighborhood 7~1(U) on
P. Suppose (W;w?') is another local coordinate system of M. If UNW # @,

then we have )
S Ow
]rk _ X]

ET N gy

on UNW. Thus

. OQw owk
J J
=dX; - 8J+Xd<8uj>+

ow’ ouP\ dwk  OuP dwk

l

Xi oul [d (8wj> ouP  Owl Oud “p ]
Owk

o

= (ax] + xlwl) 7

Owk
=DX/.—.
toow

Hence

8 .
VDY) = v 8“) DX! = XDx!.

It follows that the differential 1-form

0! = X;’DX} = X;7 (dXF + Xlwf)
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is independent of the choice of the local coordinate system, and is therefore
a differential 1-form on P.

Because (u’, X¥) is a local coordinate system on P, (du‘,dXF) are co-
ordinates of the cotangent space at a point in P. Now #' along with 05 are
(m? + m) differential 1-forms defined on P. They can be written as linear
combinations of du’,dX* in the coordinate neighborhood 7~1(U), and vice
versa. Thus #° and Of are linearly independent everywhere, that is {6°, Hf
forms a coframe field on the whole of P, whose dual is then a global frame
field on P.

Under the local coordinate system (U;u'), we have

du' = X367,
. L -
dXz'j =-Xj "Ji + X]jfei )

after the definition of §* and Gf . Exteriorly differentiating both equations,
we obtain

0=dX; A6/ + Xide’
= (=XJwj, + Xj05) A 07 + Xidod
= (=XJT},X}0" + Xj0%) A 07 + X1de?
= X, (67 — 0" A 0F) — XPX[T5,0" A\ OF,

and
0=—dXF Awl — XFdw] +dX] A6F + X]doF
=— (—Xfwlk + Xf@g) A wi - Xl-kdwi
+ (—Xho! + X]0}) A 0F + X[ o}
= —XFQl + X] (d0F — 0} A OF) .
Hence
A7 — 68 A0 = X XPXITT 0" A o
= %XﬁjX,foT;qek a2
and

46 — 08 n o] = X7 xFQb

1 .
= X XIXLX] R AN

TS
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Here T}, and R}rs are, respectively, the torsion tensor and the curvature
tensor. Let

Py = X:jXISquT;w

S = X3 X7 X[ X} R

prs*

Then the above equations become
. 1
k k l
d¢’ — 0" N6 = 5P,gle N,

‘ 1
k k l
A6} — 0F N0y = S ST 0" A0

Obviously P,gl and Sf}cl are independent of the choice of local coordinates.
Therefore the above equations are valid on the whole frame bundle P, and
comprise the so-called structure equations of the connection.

The differential forms 6 are determined by the differentiable structure
of M. The importance of the structure equations is that collectively they
give a sufficient condition for the m? differential forms Hf to define an affine
connection on M.

Lemma 3.3.1 (Cartan’s Lemma) Suppose {v1,---,v,} and {wq,--- ,w,}
are two sets of vectors in V' such that

T

Zvi/\wizo.

=1

If vy, -+ , v, are linearly independent, then the w; can be expressed as linear
combinations of the v;:

T
w; = E A5Vj, 1§i§7‘,
J=1

with aij = aji.

Theorem 3.3.2 Suppose 93, 1 <4, < m are m? differential 1-forms on
the frame bundle P. If they and the #° satisfy the structure equation

) . 1 .
d6? — 0% N 0], = 5P,gle‘f N2

‘ 1
k k l
a6 — 0F N6 = 5 S0 N9,
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where P,zl and kal are certain functions defined in P, then there exists an
affine connection D on M such that 91]. and D are related as

¢/ = X,;'DXF
locally.

Proof. Choose a coordinate neighborhood (U;u') of M, then (u?, XF) is a
local coordinate system in P. Then

0 = Xjidut,
where (X};?) is the inverse matrix of (X¥). Therefore
o' = dX;' A du® = (dXGH XF) A0 = — X dXE A,

Plugging this into the structure equation we have
. A i ok
6’ A (9; + 5P;ke — X,jde) =0.

Since the 69 are linearly independent, by Cartan’s Lemma, 9; -X ,’jdX ]k are
linear combinations of the #'. Thus we may assume

XFo! — dx} = whxi,

where w}“ are linear combinations of 6!, and hence of du’. Let

k k 1.

(.U] — F]’idul,
where F?Z- are functions on P. If we can show that the I‘?i are functions of u
only and independent of X, then I‘?i are the coefficients of some connection

under the local coordinates u?, and the theorem will be proved.
Exteriorly differentiating the equation

Xkl —dXF = whXx]

we obtain ‘ ‘ A A
dXJ A6 + XFdo) = dwh - X] — Wi AdX].

This can be simplified to

. 1 :
k l k k l h
X7 (dwf —wf Awp) = 5XFS],60 A0
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by the structure equation. Since the right hand side contains only the differ-
entials du’ and so does wé- /\wlk, dw;? should also contain only the differentials

du®. From A
wf = F?idu’
we have N N
ork. RG] )
dwf = - dul A du’ + TXJZde A du
u
l
Hence
ork.
2= 0.
oxX|

Therefore F;?i are only functions of u'.
Suppose (W;w?) is another coordinate neighborhood of M. Then (w?, Y}¥)
is the local coordinate system of P in 7~ 1(W). If UNW # @, then on UNW

we have ' ' 4
0! = X7 (dXF + X[wf) = V7 (avfF + Viwh)

where wjk = Fg’;dwj and the F;;“ are functions of w’ only. Plugging

owk
k _ vJ
vh=Xx]—oo
and N
*] *J]
X

into this equation, we get

W= d (8up> owl  OuP dwl

ow') ow " ow outP

This implies that (wf ) indeed defines an affine connection D on M, such

that (w!) is the connection matrix of D under the local coordinate system
(U;ub). O

4 Riemannian Geometry

4.1 The Fundamental Theorem of Riemannian Geometry

Suppose M is an m-dimensional smooth manifold, and G is a symmetric
covariant tensor field of rank 2 on M. If (U;u") is a local coordinate system
on M, then the tensor field G can be expressed as

G = gijdui &® duj
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on U, where g;; = g;; is a smooth function on U. G provides a bilinear
function on T),(M) at every point p € M. Suppose
0 . 0

out’ out’

then o
G(X,)Y) =g XY,

We say that the tensor G is nondegenerate at the point p if, whenever
X €Tp(M)and G(X,Y) =0forallY € T,,(M), it must be true that X = 0.
This implies that G is nondegenerate at p if and only if det(g;;(p)) # 0. If
for all X € T,(M) we have G(X,X) > 0 and the equality holds only if
X =0, then we say G is positive definite at p. A positive definite tensor
G is necessarily nondegenerate.

Definition 4.1.1 If an m-dimensional smooth manifold M is given a
smooth, everywhere nondegenerate symmetric covariant tensor field G of
rank 2, then M is called a generalized Riemmanian manifold, and G
is called a fundamental tensor of metric tensor of M. If GG is positive
definite, then M is called a Riemannian manifold.

For a generalized Riemannian manifold M, G specifies an inner product
on the tangent space T),(M) at every point p € M. For any X,Y € T,(M),
let
X Y =G(X,Y) = gij(p) XYY

When G is positive definite, it is meaningful to define the length of a tangent
vector and the angle between two tangent vectors at the same point, i.e.,

—— XY
|X| = ginlY], COS A(X,Y) = W

Thus a Riemannian manifold is a differentiable manifold which has a positive
definite inner product on the tangent space at every point. The inner prod-
uct is required to be smooth in the sense that if X,Y are smooth tangent
vector fields, then X - Y is a smooth function on M.

The differential 2-form

ds? = gijduiduj

is independent of the choice of the local coordinate system u’ and is usually
called the metric form or Riemannian metric. ds is precisely the length
of an infinitesimal tangent vector, and is called the element of arc length.
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Suppose C : u' = ui(t),to < t <ty is a continuous and piecewise smooth
parametrized curve on M. Then the arc length of C' is defined to be

5_/t1 duldud
~ S V9 a

Theorem 4.1.1 There exists a Riemannian metric on any m-dimensional
smooth manifold M.

Proof. Choose a locally finite coordinate covering {(Uq;u?,)} of M. Suppose
{hq} is the corresponding partition of unity such that supp h, C U,. Let

m

ds2 = (dul)?, ds® = hads?.

i=1

Then the ds? and ds? are defined to be smooth differential 2-forms on M. If
we choose a coordinate neighborhood (U;u) such that U is compact, then
U intersects only finitely many Uy, , - ,U,, by the local finiteness of {U,}.
Thereforethe restriction of ds? to U is

T
ds? = Z h%dsiA = gijduiduj,
A=1

where . . .
ug,, Oug,,
9ij =YD ha, 9w ow
A=1k=1
Since 0 < hy <1 and ) hq = 1, there exists an index § such that hg(p) >
0. Hence ds?(p) > hﬁds%(p). Thus ds? is positive definite everywhere on
M. O

Assume M is a generalized Riemannian manifold. When the local coor-
dinate system is changed, the transformation formula for the components of
a fundamental tensor G is given by

B ouF oul
93 = 9 G s

Since the matrix (g;;) is nondegenerate, we may denote its inverse by (g%),
ie.,
.k y ,
9" gk = gjrkg"" = 6;.
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The transformation for ¢” under a change of coordinates is given by

/i /i
g,ij _ klauz ou”
ouk oul

Hence (¢g%) is a symmetric contravariant tensor of rank 2.

Using the fundamental tensor, we may identify a tangent space with a
cotangent space, and hence a contravariant vector and a covariant vector can
be viewed as different expressions of the same vector. In fact, if X € T),(M),
let

ax(Y)=GX,Y), Y eT,(M).

Then ax is a linear functional on T),(M), i.e. ax € T,(M). Conversely,
since G is nondegenerate, any element of 7);(M) can be expressed in the
form ay. Thus « establishes an isomorphism between T),(M) and T (M).
Componentwise, if

X=X ax = X;du,

T2
out’

then we obtain from the relation of X and ax that
Xi=gi; X7, X! =g9X;.

i1ty

In general, if (tjl"'js) is a (r, s)-type tensor, then

11l —1 i1 tp—1l til-uirk o

_ klgt1-9p
tkjl"'js —gkltjl...js ; Jorgs t

lj2"'js

are (r — 1,s 4+ 1)-type and (r 4+ 1,s — 1)-type tensors, respectively. These
operations are usually called the lowering and raising of tensorial indices,
respectively.

Definition 4.1.2 Suppose (M,G) is an m-dimensional generalized Rie-
mannian manifold, and D is an affine connection on M. If

DG =0,
then D is called a metric-compatible connection on (M,G).

Condition DG = 0 means that the fundamental tensor G is parallel with
respect to metric-compatible connections. If the connection matrix of D
under the local coordinates v’ is w = (w;), then

DG = (dgii - wzkgkj - wfgik) ® du' @ du’.
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Thus DG = 0 is equivalent to
dgij = wi gj + W) gir,

or in matrix notation,

dG=w-G+G-wT,

where G represents the matrix

gi1 - Gim
G: . .

gm1 - Gmm

The geometric meaning of metric-compatible connections is that parallel
translations preserve the metric. In particular, on a Riemannian manifold,
the length of a tangent vector and the angle between two tangent vectors
are invariant under parallel translations.

Theorem 4.1.2 (Fundamental Theorem of Riemanninan Geome-
try) Suppose M is an m-dimensional generalized Riemannian manifold.
Then there exists a unique torsion-free and metric-compatible connection
on M, called the Levi-Civita connection of M, or the Riemannian
connection of M.

Proof. Suppose D is a torsion-free and metric-compatible connection on M.
Denote the connection matrix of D under the local coordinates u' by w =
(w!), where

J_1J k
w; = Iy du”.

Then we have

dgij = wigkj + W gri,

ng = F?a
Denote )
Tk = gl wik = guwl.
Then
?)ii,z = Tijk + Ljiks
Lijr = D
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Cycling the indices, we get

99k
azzj = DLikj + Drij,
99gjk
a;i = Djri + Dijse

Therefore

A i Ag;k _ 9gij
ouw — Out  Ouk

We then obtain

= Dikj + Thij + Ujki + Uiji — Dijie — Ujire = 235

Lo 1 (agik 9k 3g¢j>
ki~ 9 \ gui out  Ouk /)’

and then

1 4 <3giz g 3gij>
2 oul ~ Out  oul /)’

Thus the torsion-free and metric-compatible connection is determined uniquely
by the metric tensor.

Conversely, the Ff“'j defined above indeed satisfy the transformation equa-
tion for connection coefficients under a change of local coordinates. Hence
they define an affine connection D on M. Computations also verify that D
is a torsion-free and metric-compatible connection on M. O

ko

The I'; and Ffj defined above are called Christoffel symbols of the
first kind and second kind, respectively.

It is more convenient to use an arbitrary frame field instead of the natural
frame field in a neighborhood of a Riemannian manifold. A local frame field

is a local section of the frame bundle. Suppose (e1,- - ,ep,) is a local frame
field with coframe field (6%,---,6™). Let

—
Dei = Ol €5,

where 0 = (93 ) is the connection matrix of D with respect to the frame field
(€1, -+ ,em). Here the 07, 95 are exactly the forms obtained by pulling the
differential 1-forms 6% and 9{ on the frame bundle P back to local sections.
Hence by the structure equations, the statement that D is torsion-free is
equivalent to the statement that the 9{ satisfy the equations

46’ — 67 A 6% = 0.
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If we still denote g;; = G(e;, €;), then the metric form is ds® = gl-]ﬁ’ﬂj. Since
G = gijﬂi ® 07, we have

DG = (dgij — gzkﬁf — gkﬁf) & QZ & Gj.
Therefore the condition for D to be metric-compatible is still
dgij = g0} + gi;07.

Now the Fundamental Theorem of Riemannian Geometry can be restated
as follows.

Theorem 4.1.3 Suppose (M,G) is a generalized Riemannian manifold,
and {#’,1 < i < m} is a set of differential 1-forms on a neighborhood U C M
which is linearly independent everywhere. Then there exists a unique set of
m? differential 1-forms 9}“ on U such that

do’ — 67 A6 =0,

and
dgij = g0} + gi; 07,
where the g;; are the components of G' with respect to the local coframe

field {0}, i.e. G = g;;0' ® 6.

If M is a Riemannian manifold, and G is positive definite, then we can
choose an orthogonal frame field {e;,1 < ¢ < m} in U with g;; = J;5, or

equivalently,
m

ds® =) (6"

=1

The condition for the connection to be metric-compatible then becomes
i J _
0 +6; =0,

which implies that the connection matrix 6 = (93 ) is skew-symmetric.
By definition, the curvature matrix of the Levi-Civita connection w is

Q=dw—wAw.
Exterior differentiation of the equation

dG=w- -G+ G- w’
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yields
dw-G—wAdG+dG AW + G- (dw)T =0,

and then
(dw —wAw) - G+G-(dw—-wAw)l =0,
ie.
Q-G+ (- =0
Let

Qij = Qi grj,
then Q- G = (£;5), and the above equation becomes
Qij + jS =0,

that is, €;; is skew-symmetric with respect to the lower indices. By a direct
calculation we get
Qij = dwij — wf A Wik
Also, we have
1.
J _ J k l
Q= §Rikldu Adu’,

where ; i
gkl = ZEZ - aal;llk + thlrgzk - thkril'
If we let
Rijii = Riyygnj»
then 1
shzimwmhmw
and FINS)
Rijp = 6u’]f - 8175 + T8 T — DA ke

Here R;jj; is a covariant tensor of rank 4. It is determined completely by
a given generalized Riemannian metric on M, and is called the curvature
tensor of the generalized Riemannian manifold M.

Theorem 4.1.4 The curvature tensor R;ji; of a generalized Riemannian
manifold satisfies the following properties:

1. Rijp = —Rjirr = —Rijis

2. Rijp + Ry + Ry = 0;
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3. Rijr = Ryuij-

Proof. The skew-symmetry of ngl in the last two lower indices implies the
same property of R;jx, i.e.,

Rijki = —Rijik.
Since we have

1
0=Q; +Q = §(Rijkl + Rjigg)du® A dud,

it must be true that
Rijii + Rjirr = 0.
From the torsion-free property of the Levi-Civita connection we have
du’ A wij = 0.
Exteriorly differentiating this and using the formula
Qij = dwij + wf N Wik,

we then have '
du' A (QU - (/.)llC A wjk) =0,

thus A
du® A Qij =0.

Therefore ‘
Rjiggdu’ A du® A dul =0,

or equivalently,
(Rjirt + Rjrii + Rjuar)du’ A duP A dul = 0.
Since the coeflicients are skew-symmetric in the last three indices, we have
Rjigr + Rjpi + Rjiir = 0.
We can cycle the indices to obtain
Rijri + Ripj + Ry = 0.
It follows that
0 = (Rijii + Rirtj + Raji) — (Rjirs + Rjrii + Rjr)
= 2R + Ripj + Rujr + Rjra + Ryjik-

o7



Similarly we also have
2Rp1ij + Riiji + Rijii + Rk + Ry = 0.
Due to the skew-symmetry property 1, we finally have
Riji = Rpyaij-
O

As a corollary, under the same conditions as in Theorem 4.1.4, we have

Further, from DG = 0 we have

9ijk = 0,
and hence

Rijiin = (9ipRi) n = 9ip Ry -
Thus it follows from
Rlyn+ Rl + Ry =0
that
Rijkin + Rijing + Rijarg = 0.

This is also called the Bianchi identity.

4.2 Geodesic Normal Coordinates

Definition 4.2.1 Suppose M is an m-dimensional Riemannian manifold.
If a parametrized curve C' is a geodesic curve in M with respect to the Levi-
Civita connection, then C is called a geodesic of the Riemannian manifold
M.

Suppose the coefficients of the Levi-Civita connection D under the local
coordinates u' are I';;. Then the curve €' : u' = u'(t),1 <i < misa
geodesic if it satisfies the system of second order differential equations

d?u’ - dud duF

QU i Iy 1 <i<m
w2 kg @ ) rstem
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By definition, the tangent vector of a geodesic is parallel along the curve with
respect to the Levi-Civita connection, which also preserves metric properties
under parallel displacement. Therefore the length of the tangent vector

X - xi 8' :dui 8‘
ou dt ou?
of a geodesic is constant, that is,
S
— = const.

dt

Hence we see that the parameter for a geodesic curve in a Riemannian
manifold must be a linear function of the arc length s, i.e.

t = As+ pu,

where A # 0 and p are constants.

The discussions below only assume that M is an affine connection space.
Suppose the equation of a geodesic under the coordinate system (U;u') is
given by

de2 IR ar dt
By the theory of ordinary differential equations, there exist for any point
xo € U a neighborhood W C U of zy and positive numbers 7,6 such that
for any initial value x € W and a € R™ satisfying ||| < r, the system of
equations has a unique solution in U expressed as

=0, 1<i:<m.

ul = fi(t, 2k, o), |t <0,
that satisfies the initial conditions
u'(0) = f(0,2%, %) = o,
du’ (0) = Ofi(t, x*, oF)
dt ot

= Cki.

t=0

Furthermore, the functions f* depend smoothly on the independent variable
t and the initial values z¥, a*.

If we choose a nonzero constant ¢, then the functions fi(ct,z¥, o),z €

W, |lee]] <, [t] < &/|c| still satisfy the system of equations with initial values
i E Kk i
filet,z", o )‘t:O =2a',

Ofi(ct,z*, a¥)

ot

= Ccxx .
t=0
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By the uniqueness property of the solution of the system of differential
equations, whenever |||, |cal| < and |t], |ct| < §, we have

filct,a® o) = fi(t, 2", ca).

Since the left hand side of the above equation is always defined when x €
Wi lla|| < 7 |t] < d/|c|, we can use it to define the right hand side. Thus
the function f(¢, 2%, oF) is always defined for x € W, |t| < §/|c|, [|a| < |¢|r.
In particular, we can choose |¢| < §, so that fi(¢,z* aF) is defined for
x e W,|t| <1and |a| <|c|r. Let

ui _ fi(l,xk,ak),
then ' 4
Fi(1,2%,0) = £(0,2"%, aF) = 2*.

Thus for a fixed x € W, this provides a smooth map from a neighborhood
of the origin in the tangent space T,(M) to a neighborhood of z in the
manifold M. Because

_ Of'(1,2% ta")
N ot

_ afz(lvxk7ak) 'Oéj
O ’
t=0 a=0

ou’ ;
(80[j ) a=0 - 5j

Hence the a’ can be chosen to be local coordinates of z in M, called the
geodesic normal coordinates of x, or simply normal coordinates. A
normal coordinate system of a point in M is determined up to a nondegen-
erate linear transformation.

Fix af = 0/5. Ast changes, to/g describes a straight line in T, (M) starting
from the origin, and traces a geodesic curve on the manifold starting from
x and tangent to the tangent vector (af). Therefore the equation for this
geodesic curve under the normal coordinate system o’ is

T afi(tvxkvak)
@ ot

t=0

we have

of = to/g,

where alg is a constant.

Theorem 4.2.1 If M is a torsion-free affine connection space, then with
respect to a normal coordinate system ' at the point z, the connection
coefficients F;- . are zero at w.
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Proof. Since the geodesic curve o = taf satisfies the system of differential
equations for geodesics under the normal coordinate system o', we have for
any af,
i J k _
Ipagag = 0.
Since F;k is symmetric in the lower indices for torsion-free connections, we

have '
5(0)=0, 1<4,5,k<m.

O]

Theorem 4.2.2 For any point zg in an affine connection space M, there
exists a neighborhood W of zy such that every point in W has a normal
coordinate neighborhood that contains W.

Proof. Suppose (U;u') is a normal coordinate system at a point zg. Let

S (wi(@)? < p? } .

Ul(zo; p) = {z eU
=1

By the above discussion, there exists a neighborhood W = U (zg;r) of xg
and a positive number § such that for any z € W and o € R™, ||laf| < 4,
there is a unique geodesic curve

ul = fi(t, 2k o), 1t <2,
with initial condition (z,a). Let
B(0;6) = {a € R™ | [|af| < 0}
Then we have a map ¢ : W x B(0;6) — W x U such that
o(z,0) = (2%, fF(1,2%,0%), =€ W,ae B(0;6).

The map ¢ is smooth since the function f* depend on x and « smoothly.
Noting that

(z0,0)

the Jacobian matrix of the map ¢ is nondegenerate near the point (z¢,0) €
W x B(0;6). By the Inverse Function Theorem, there exists a neighborhood
V' of the point (x0,0) and a positive number a < ¢ such that ¢ : V —
U(zo;a) x U(zo;a) is a difftomorphism. For any z € U(zo;a), let

Ve ={a € B(0;a) | (x,a) € V}.
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Then the map ' .
ut = fi(1,2%, a5, acV,

is a diffeomorphism from V, to U(xp;a). Choose W' = U(xp;a), and then
the above formula shows that W’ has the desired property. 0

Corollary 4.2.3 For every point zg in an affine connection space M, there
exists a neighborhood W of x( such that any two points in W can be con-
nected by a geodesic curve.

Theorem 4.2.4 A torsion-free affine connection is completely determined
locally by the curvature tensor.

Proof. Consider a normal coordinate system o at a fixed point O. Choose
a natural frame at O, and parallel displace the frame along the geodesic
curves starting from O. Thus we get a frame field {e;,1 < i < m} in a
neighborhood of O. Let 6 be the dual differential 1-forms of e;, and denote
the restriction of the everywhere linearly independent m? differential 1-forms
6] of the frame bundle to the above frame field by the same notation. Then
o, 05 are differential 1-forms of ¢,a*. When the o* are constants, 6%, «95 are
restricted to the geodesic curve a’t. Since the frame field is parallel along
the geodesic curve o't, we have

0" =a'dt + 0",
o =@,

where 6 and ég are the parts of # and Qg without df. Plugging this into
the structure equations and comparing the terms with d¢, we obtain

o0 L
_ i Jot
ETi da’ + a’0;,
06! o
pr aksy 6.

Differentiating the first formula with respect to t again, we obtain

e _ o0,
ot? ot

_ Jjkgi pl

Since the frame field e; is parallel along any direction at the point O, we
have

6! =0
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and then

o0 -
=da’.
It |10
Moreover, by definition we have
0! = a'dt,
t=0
and thus N
0 =0.
t=0

For a given curvature tensor, the system of second-order ordinary differ-
ential equations

020"

ot?

has a unique solution for #° under the initial conditions, and ég is then
completely determined. Hence the curvature tensor completely determines
the torsion-free affine connection locally. O

_ Ji~kqi pl

Now assume M is an m-dimensional Riemannian manifold. Suppose
xo € M, and choose a fixed orthogonal frame Fy in the tangent space
Tyo(M). Then the normal coordinate system u’ at z can be expressed
as u’ = a's, where (o) is a unit vector in T}, (M) and s is the arc length of
the geodesic curves starting from xg. Displace the frame Fy parallel along
the geodesic curves originating from zy to obatin an orthogonal frame field
in a neighborhood of xg. We can write

0" = a'ds + 6, 03 = ég,

where 6, 9{ do not contain the differential ds, and satisfy the equations

%il =do! + /0,
nJ
a;; = ksgkle_l’
0] +6! =0,
with initial conditions
gl —o, @ —o 2| _aa
s=0  'ls=0 7 9s |,
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The arc length element near the point O can be expressed by

do? =) (") =ds’ +2ds > _a'0' +> ().
=1 =1 =1
Since .
D (@) =1,
=1
we have .

Together with

we see that

Therefore

Hence the arc length element near O is
m .
do® = ds® + ) ().
i=1

Theorem 4.2.5 For every point O in a Riemannian manifold M, there
exists a normal coordinate neighborhood W such that

1. Every point in W has a normal coordinate neighborhood that contains
w.

2. The geodesic curve that connects O and p € W is the unique shortest
curve in W connecting these two points.

Proof. Applying Theorem 4.2.2 to the Levi-Civita connection of M, and
condition 1 follows. Now assume that u’ is the normal coordinate system
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of the point O given by u! = a's. A normal coordinate neighborhood W as
required in consition 1 is

W:{pEM

S (i (p)? < €2 } ,

i=1

where ¢ is a sufficiently small positive number. Because W is a normal
coordinate neighborhood, for any p € W, there exists a unique geodesic
curve v in W that connects O and p. Suppose the length of v is so.

Suppose C is any piecewise smooth curve in W that connects O and p.
We may assume that the parametrized equation for C' is u’ = u'(s), where
s is the arc length parameter of v. Then the arc length of C is

s0
/ do =
0

If C is the shortest path in W connecting O and p, then the equality holds.
Hence we must have

along the curve C. If we write
0" = sda’ + Aé»dozj ,
then the Az- satisfy the initial conditions

. OA:
Ayl =0, —Z

=0.
s=0 0s

s=0

This implies that A; = o(s) when s — 0. Since

AL
da'+ —2da? =0
S
holds on C, we can let s — 0 to obtain
da' =0, o= const.

It follows that C' is a geodesic curve connecting O and p, i.e. C = . O
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Theorem 4.2.6 Suppose U is a normal coordinate neighborhood of the
point O. Then there exists a positive number € such that, for any 0 < § < ¢,

the hypersphere
S ot}

dis = {pG U
i=1

has the following properties:

1. Every point on X5 can be connected to O by a unique shortest geodesic
curve in U.

2. Any geodesic curve tangent to X is strictly outside X5 in a deleted
neighborhood of the tangent point.

Proof. Choose W to be a normal coordinate neighborhood as required in
Theorem 4.2.5. We may assume that W is a spherical neighborhood with
radius e. When 0 < § < ¢, since ¥5 C W C U and U is a normal coordinate
neighborhood, property 1 is just a corollary of Theorem 4.2.5.

The equation of 35 can be written as

Ful, - u™) = Z[(u')? + - 4 (u™)? = 6% =0.

where ¢ is the arc length of v measured from the point p. Then
F(u"(0))]o=0 = 0.

By the discussion before Theorem 4.2.5, the hypersphere X5 is orthogonal to
geodesic curves starting from the point O, thus the geodesic curve v tangent
to s at the point p should be orthogonal to the geodesic curve connecting
O and p. Therefore

m
oo du?
7 —
> ul(o) P =0.
i=1 o=0
Direct calculation yields
d . o~ dud
7F 7 — 7 — 0
"] =G| =0
- o
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and

d? , " “ du’ du?

Since (U;u') is a normal coordinate system, we have
k
r ij (p) = 0.

Hence we can choose a sufficiently small € > 0 such that whenever 0 < § < ¢,
the second-order derivative of F(u'(c)) with respect to o at o = 0 is always
positive. Thus F(u’(c)) is strictly positive near p, which means that the
geodesic curve lies strictly outside Y5 near p, and has only one point in
common with s, namely p. O

Definition 4.2.2 Suppose M is a connected Riemannian manifold, and
p, q are two arbitrary points in M. Let

p(p, q) = inf pq,

where pq denotes the arc length of a curve connecting p and ¢ with measur-
able arc length. Then p(p,q) is called the distance between points p and

q.

Theorem 4.2.7 The function p : M x M — R is a metric on M and makes
M a metric space. The topology of M as a metric space and the original
topology of M as a manifold are equivalent.

Theorem 4.2.8 There exists a n-ball neighborhood W at any point p in
a Riemannian manifold M, where 7 is a sufficiently small positive number,
such that any two points in W can be connected by a geodesic curve inside
W. Such a neighborhood is called a geodesic convex neighborhood.

Proof. Suppose p € M. There exists a ball-shaped normal coordinate neigh-
borhood U of p with radius € such that for any point ¢ in U there is a normal
coordinate neighborhood V; that contains U. We may assume that ¢ also
satisfies the requirements of Theorem 4.2.6. Choose a positive n < /4.
We will show that the rn-ball neighborhood W of p is a geodesic convex
neighborhood of p.

Choose any q1,q2 € W. Then

| ™

p(a1,q2) < p(p,q1) + p(p,q2) < 2n <
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Suppose U(q1;¢/2) is an £/2-ball neighborhood of ¢1, then g2 € U(q1;¢/2) C
U C V4. By Theorem 4.2.5, there exists a unique geodesic curve v in
U(qi;¢/2) connecting ¢; and ¢o, whose length is precisely p(qi1,q2). We
prove that the geodesic curve « lies inside W. Since v C U(q1;¢/2) C U,
the function p(p, q),q € v is bounded. If v does not lie inside W completely,
then the function p(p, ¢), ¢ € v must attain its maximum at an interior point
qo of 7. Let § = p(p, qo)- Then § < e, and the hypersphere ¥; is tangent to ~y
at qo. By Theorem 4.2.6, v lies completely outside 5 near qg, contradicting
the fact that p(p, q), q € v attains its maximum at gy. Therefore y C W. O

4.3 Sectional Curvature

Suppose M is an m-dimensional Riemannian manifold whose curvature ten-
sor R is a covariant tensor of rank 4, and u’ is a local coordinate system in
M. Then R can be expressed as

R = Riidu’ @ dv’ @ duf @ dul.

At every point p € M, we have a multilinear function R : T),(M) x T,(M) x
T,(M) x T,(M) — R, defined by

RX,)Y,ZW)=(XY ®ZxW,R).
If we let

Yy =Y! 9 Z =27 4 W =Ww? 9

X =X_— : : :
out’ out’ out’ out’

then o
R(X,Y,Z,W) = Ry XY ZFW',
In particular
9 9 9 3)
out’ Qul’ uk’ oul )
We have already interpreted the curvature tensor of a connection D as a

curvature operator: for any given Z,W € T,,(M), R(Z,W) is a linear map
from T,,(M) to T,(M) defined by

Riju =R <

o o
_ D) i 7k l
R(Z,W)X = Ry, X' Z'W! .

If D is the Levi-Civita connection of a Riemannian manifold M, then we
have
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where - on the right hand side is the inner product defined by
X Y=GX)Y).

By the properties of Rjjj;, the 4-linear function R(X,Y, Z, W) has the fol-
lowing properties:

1. RIX,Y,Z,W)=—-R(X,) YW, Z)=—-R(Y, X, Z,W);

2. RX,)Y,Z W)+ R(X,ZW,Y)+ R(X,W,Y, Z) = 0;

3. RX,)Y,Z,W)=R(Z,W,X,Y).

Using the fundamental tensor G of M, we can also define a function
GX,Y,Z,W)=G(X,2)GY,W) - GX,W)G(Y, Z).

Obviously the function defined above is linear with respect to every variable,
and also has the same properties 1-3 as R(X,Y,Z, W). If X,Y € T,(M),
then

GXY, X,Y) = |XPIYP — (X V) = [ XY 2sin® Z(X, V).

Therefore when X, Y are linearly independent, G(X, Y, X,Y) is precisely the
square of the area of the parallelogram determined by the tangent vectors
X and Y. Hence G(X,Y, X,Y) #0.

Suppose X', Y’ are another two linearly independent tangent vectors at
the point p, and that they span the same 2-dimensional tangent subspace E
as that spanned by X and Y. Then we may assume that

X' =aX +bY, Y' =cX+dY,
where ad — bc # 0. By properties 1-3 we have
R(X"Y' X" Y") = (ad — bc)’R(X,Y, X,Y),
GX", Y, X"Y') = (ad — bc)*G(X,Y, X,Y).

Thus
R(X’,Y’,X’,Y’) R(X,Y,X,Y)

CXY . XY)  GX.Y.XY)

This implies that the above expression is a function of the 2-dimensional
subspace E of T),(M), and is independent of the choice of X and Y.
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Definition 4.3.1 Suppose E is a 2-dimensional subspace of T),(M), and
X,Y are any two linearly independent vectors in £. Then

R(X,Y,X,Y)

K(E) = TG(X,Y,X,Y)

is a function of E independent of the choice of X and Y in E. It is called
the Riemannian curvature, or sectional curvature, of M at (p, F).

The product of the two principal curvatures at a point on a surface in
3-dimensional Euclidean space is called the total curvature, or Gauss
curvature, of the surface at that point. The Theorema Egregium shows
that the total curvature K depends only on the first fundamental form of

the surface as

R
K= _ 1212’

9

where
9= g11922 — Gio

and
Ol'te2 Oy

oul  ou?

Suppose m > 3 and FE is a 2-dimensional subspace of T),(M). Choose
an orthogonal frame {e;} at p such that E is spanned by {e1,e2}. Suppose
u' is the geodesic normal coordinate system determined by this frame near
p. Now consider the 2-dimensional submanifold S of all geodesic curves

starting from p and tangent to £. Then the equation for S is

+ T4 Tope — ThyTon1.

Ri912 =

u =0 3<r<m,

and (u!,u?) are the normal coordinates of S at p. S is called the geodesic
submanifold at p tangent to E. We will prove that the sectional curvature
K(E) of M at (p, F) is exactly the total curvature of the surface S, with
Riemannian metric induced from M, at p.

Suppose the Riemannian metric of M near p is

ds? = gijduiduj.
Then its induced metric on S is
d5? = Gapdu®du®, 1< a,p<2,
where

gag(ul,UQ) = gag(ul,uQ,O, -, 0).
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Therefore

Possls = (3gﬂw + %08 _ 89{17)

ou*  Qur  oul /g
(8.9_7,87 8§a,ﬁ’ . 8ga'y> -7
ou®  OuY oub opr:

[ = DN =

2

Since (u') and (u®) are normal coordinate systems of M and S, respectively,
at p, we have

Lapy(p) = Tijr(p) = 0.

Hence

Ol'22 Ol h h
R1212(p) = ( aul — 8u2 + FllFQhQ — F12F2h1 ,
Ol OTi21 =
( oul ou? 1212(p)
p
The sectional curvature of M at (p, E) is then
R(e1,ez,e1,€2) Ri212 Ri212 -
K(E):— = — 2 = = — 5 :K(p)
G(e1, €2, €1, €2) 91192 = gial,  gnge2 — G|,

The right hand side is precisely the total curvature of the surface S at p.

Theorem 4.3.1 The curvature tensor of a Riemannian manifold M at
a point p is uniquely determined by the sectional curvatures of all the 2-
dimensional tangent subspaces at p.

Proof. Suppose there is a 4-linear function R(X,Y,Z, W) satisfying all the
properties 1-3 of the curvature tensor R(X,Y, Z, W), and that for any two
linearly independent tangent vectors X,Y at p,

R(X,Y,X,Y) _R(X,Y,X,Y)

GIX,Y,X,Y) GX,V,X,Y)

We will show that for any X,Y, Z, W € T,,(M), we have

R(X,Y,Z, W)= R(X,Y,Z,W).

If we let

S(X,Y,Z,W)=R(X,Y,Z,W) - R(X,Y,Z,W),
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Then S is also a 4-linear function satisfying the properties 1-3 and for any

X,Y € T,(M), it holds that
S(X,Y,X,Y)=0.

It suffices to show that S is the zero function.
First we have
SX+ZY,X+ZY)=0.

Expanding this and using the properties of S we obtain
S(X,Y,Z,Y)=0.

Thus
S(X,2Y+W,Z)Y +W) =0,

and by expanding we obtain
S(X,Y,Z, W)+ S(X,W,Z,Y)=0.
Therefore
S(X,Y,Z,W)=-S(X,W,Z)Y)=S(X, W)Y, Z).
A similar argument shows that
S(X,Y,Z,W)=SX,W,Y, Z)=5(X,Z,W,Y).

On the other hand, it holds the identity

S(X,Y,Z,W) + 8(X,Z,W,Y) + S(X,W.Y, Z) = 0.

Thus
S(X,Y,Z,W)=0

and the proof is completed.

O]

Definition 4.3.2 Suppose M is a Riemannian manifold. If the sectional
curvature K (FE) at the point p is a constant, i.e. independent of E, then we

say that M is wandering at p.

If M is wandering at p, then the sectional curvature of M at p can be

denoted by K (p). Hence for any X,Y € T,(M) we have

R(Xa Y7Xa Y) = _K(p)G(X7 Y7X7 Y)
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According to the proof of Theorem 4.3.1, for any X,Y,Z, W € T,(M), we
have
R(X,Y,Z,W) = —~K(p)G(X.Y, Z,W).

Thus the condition for a Riemannian manifold to be wandering at p is
Rijii(p) = —K(p)(9ikgji — 9ugjk) (),

Qij(p) = —K(p) - 0: AN 0;(p),

where 6; = gijduj.

Definition 4.3.3 If M is a Riemannian manifold which is wandering at
every point and the sectional curvature K(p) is a constant function on M,
then M is called a constant curvature space.

Theorem 4.3.2 (F. Schur’s Theorem) Suppose M is a connected m-
dimensional Riemannian manifold that is everywhere wandering. If m > 3,
then M is a constant curvature space.

Proof. Since M is wandering everywhere, it holds that
Qij =—-K0; A 9]',

where K is a smooth function on M, and 8; = gijduj. Exterior differentia-
tion yields

inj =—dK AB; A 0]‘ — Kdo; A 9]‘ + K0; N d@j.
However,
do; = dgij A du’ = (gz'kwf + grjwi) A dud = (wij + wji) A dadd,

where
k k

Since the Levi-Civita connection is torsion-free, we have
wji N du’ = Fﬂkduk Adu! = 0,

and hence ‘
do; = wij A du’ = wf VAN Qj.
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On the other hand, by the Bianchi identity,
dQ;; = d (Qhgy)
= dQ - gij + QL A dgy
= (wF A Q= QF Awl) g1 + A (@i + win)
= W' A Qg+ QF Awji
= wf A ij + Qi /\wf.
Thus
dQZ‘j = —szk A O N\ (9j — K6; N6, /\(A)}C = —Kdb; A Hj + K0; N dej.

We then obtain
dK A 6; A Gj =0.

Since {6;} and {du’} are both local coframes, we may assume that dK =
ak0y.. Since m > 3, we have

AFOL N AOp = (—1)F MK AO A AOg A A =0, 1<k<m.
Hence dK = 0. Since M is a connected manifold, K is a constant function
on M. O
4.4 The Gauss-Bonnet Theorem

Suppose M is an oriented 2-dimensional Riemannian manifold. If we choose
a smooth frame field {e, ea} in a coordinate neighborhood U whose orien-
tation is consistent with that of M, with coframe {#', #2}, then the Rieman-
nian metric is

ds® = g;;0'07, 1<i,j <2,

where g;; = G(ej, ej). By the Fundamental Theorem of Riemannian Geom-
etry, there exists a unique set of differential 1-forms 6 such that

A0 — 07 NG =0, dgi; = girb" + gi0F.
The 93 define the Levi-Civita connection on M by
De; = GZ ej.
The curvature form for the connection is

QO = de? —6F A 6]
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Let Q;; = Qfgkj, then €);; is skew-symmetric. Since the indices ¢, j only take
the values 1 and 2, the only nonzero element in the curvature form €);; is
Q12. '

Let Q denote the curvatre matrix (€2)) and write

G — (.911 912> ‘
921 922
If (e}, €}) is another local frame field in a coordinate neighborhood W C M
with orientation consistent with that of M, then in UNW, when UNW # &,

() =4 ()
e es)’

1 2
A= (“% “;) . det A > 0.
ay Gy

where

Let G’ and € denote the corresponding quantities with respect to the frame
field (e}, €,). Then

G=A-G-AT, O =A-G-A"

Therefore
Q-G =4-(Q-G)-AT,
i.e.
< 0 Q’lz)_(a% a%)( 0 ng> (a% a%)
—Qy 0/ \ad a3/ \-Q12 0/ \a? da3/°
Thus

,12 = (a%a% — a%a%)Qw = (det A) . Q12.
We also have
g =det G’ = (det A)? - det G = (det A)? - g.

Hence ;
Q12 o Q12

Vg Vg
In the other words, 212/,/g is independent of the choice of the orientation-
consistent local frame field, and is therefore an exterior differential 2-form
defined on the whole manifold. If we choose a local coordinate system u°
with the same orientation as M, and {ej, e2} is the natural basis, then

1
Qg = §R12klduk VAN du! = R1212dU1 A du?.
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Thus O R
2 2R gdu! Adu? = —Kdo,

V9 g
where K is the Gauss curvature of M and do = \/ﬁdul Adu? is the oriented
area element of M.
If {e1, e} is an orthogonal local frame field with an orientation consistent
with that of M, then

g =g11922 — gy = 1.

Thus
Kdo = —qs.

On the other hand, ‘
Q9 =dbo + Qi A ;.

The skew-symmetry of 9{ implies that
Qo = dby9,
where 615 = Dej - e5. It then follows that
Kdo = —dfs.

As long as there exists a smooth orthogonal frame field {e;,es} with an
orientation consistent with M in an open subset U C M, then there exists
a connection form #15 on U, and hence the above formula holds.

On an oriented 2-dimensional Riemannian manifold, a smooth orthogo-
nal frame field with an orientation consistent with that of M corresponds to
a tangent vector field that is never zero. In fact, the tangent vector e, in the
frame {ej, ea} is obtained by rotating e; by 7/2 according to the orienta-
tion of M. Therefore an orthogonal frame field {ej, e2} with an orientation
consistent with that of M is equivalent to the unit tangent vector field e;.

A null point of a tangent vector field is called a singular point. Assume
that there is a smooth vector field X on U that has exactly one singular point
p, i.e. Xy # 0 whenever ¢ € U — {p}. Then there is a smooth unit tangent

vector field
X

T

which determines an orthogonal frame field {e1, e2} with an orientation con-
sistent with that of M in U —{p}. Therefore, if {e1, e} is a given orthogonal
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frame field on U that is also orientation-consistent with M, then we may
assume that

a1 = e cosa + e sin o,

as = —ej sina + eg cos a,

where a = Z(ej,a1) is the oriented angle from e; to a;. Although « is a
multi-valued function, the difference between two values of « is an integer
multiple of 27 at every point. Thus there always exists a continuous branch
of o in a neighborhood of any point. The single-valued function obtained
from this branch is smooth in the neighborhood. Let

w1z = Day - ag,
then direct calculation yields that
w12 = da + 912.

Suppose D is a simply connected domain containing the point p whose
boundary is a smooth simple closed curve C' = 0D. Then C has a induced
orientation of M. Suppose the arc length parameter of C is 5,0 < s < L,
and the direction along the curve as s increases is the same as the induced
direction of C'. So C(0) = C(L). Since C is compact, it can be covered by
finitely many neighborhoods, and there exists a continuous branch of « in
each neighborhood. Therefore, there exists a continuous function

a=a(s), 0<s<L

on C. By the Fundamental Theorem of Calculus we have

(L) — a(0) = /OL da.

Since a(L) and «(0) are the angles between the tangent vectors a; and ey
at the same point C(0) = C(L), the left hand side is an integer multiple of
27, and is independent of the choice of the continuous branch of «a(s). It is
also independent of the choice of the frame field {e1, es}.

The value of

L
a(L) —a(0) = /0 da

given above is also independent of the choice of the simple closed curve C
surrounding the point p. Suppose there is another simply connected domain
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D C D containing p. Let C1y = dD;. Then D — D; is a domain with
boundary in M, and its boundary with induced orientation is C — C. By
the Stokes’ Formula, we have

/ da:/ wlg/ (912
Cc—Cy Cc-Cy c-C1
:/ wlz—/ dbio
c-C D—D;
:/ W12+/ Kdo.
C—-C1 D—Dy

The right hand side is independent of the choice of the frame field {e;,ea}
on D — D;. Hence we may assume that e; = a;,7 = 1,2. Then the right
hand side vanishes and hence

/ da =0,

Cc-Cq

/da = da.
C C1

Definition 4.4.1 Suppose X is a smooth tangent vector field with an
isolated singular point p, and U is a coordinate neighborhood of p such that
p is the only singular point of X in U. Then the integer

or equivalently,

I, = —[a(L) - a(0)] = — /C da,

:27r

obtained by the above construction is independent of the choice of the simple
closed curve C surrounding p, and the choice of the frame field {e;,e2} on
U. It is called the index of the tangent vector field X at the point p.

Integrating
w12 = da + 912

over C' we obtain

1 1 1
— wlgz/doz Kdo.
2 C 2T C 2 D

Since the Gauss curvature is continuous at p, when D is shrunk to a point,

the integral
1
/ Kdo — 0.
2T D
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However, the integral
1

— | da
2 C
is exactly the constant I,. Hence we have

I,=— lim w12.
P 2T C—p C

Theorem 4.4.1 (Gauss-Bonnet Theorem) Suppose M is a compact
oriented 2-dimensional Riemannian manifold. Then

1
— | Kdo = (M
5 /M o= x(M),

where x(M) is the Euler characteristic of M.

Proof. Choose a smooth tangent vector field X on M with only finitely
many isolated singular points p;,1 < ¢ < r. For each p;, we choose a e-
ball neighborhood D;, where ¢ is a sufficiently small positive number such
that p; is the only singular point of X in D;. Let C; = 0D;, then C; is
a simple closed curve with induced orientation from M on D;. Thus the
tangent vector field X determines a smooth orthogonal frame field {e1,es}
on M — |, D; that is orientation consistent, with e; = X/|X|. Suppose
(912 = D61 - €9. On M — Uz Di, we have

dbi = Q19 = —Kdo.

Also, by the Stokes’ Formula,

Kdaz—/ dfix = / 012.
/MU7,D1 M-, D; ' ZZ; C;

Since the frame field {ej,es} is actually well-defined on M — {p;,1 < i <
r}, the equation still holds as ¢ — 0. Also, since K is a continuously
differentiable function defined on the whole M, we have

lim Kdaz/ Kdo.
e—0 M_Ui D; M

Noting that we also have

T r
I bro =275 1,
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it follows that .
<),
— Kdo = I,

Since the left hand side is independent of the tangent vector field X, we
may construct a special one as follows. Choose a triangulation of M with
f faces, e edges and v vertices. Then we can construct a smooth tangent
vector field X such that the center of mass of each face, the midpoint of
each edge, and each vertex is a singular point, whose index is +1, -1, and
+1, respectively. For this tangent vector we have

lei:f—e—kvzx(M).

i=1

Hence )
— Kdo = v(M).
9 /M X ( )

The above proof also implies the Hopf’s Index Theorem below.

Theorem 4.4.2 (Hopf’s Index Theorem) Suppose there is a smooth
tangent vector field on a compact oriented 2-dimensional Riemannian man-
ifold with finitely many singular points. Then the sum of its indices at the
various singular points is equal to the Euler characteristic of the manifold.

Suppose C'is a smooth curve on M, and a; is a unit tangent vector to C.
Choose a unit normal vector as to C such that the orientation determined
by {a1,a2} is consistent with that of M. Since Da; is colinear with as, we

may assume
Da1

K, =

g ds

kg is called the geodesic curvature of C. A necessary and sufficient con-
dition for C' to be a geodesic curve is

ay.

kg = 0.

Suppose D is a compact domain with boundary in an oriented 2-dimensional
Riemannian manifold M whose boundary 9D is composed of finitely many
piecewise smooth simple closed curves with induced orientation from D.

80



Suppose the interior angle of 0D at each vertex p; is «;,1 < i < [. By the
similar method we can prove the Gauss-Bonnet Formula

zl:(w—ai)—/aDmgdH/DKda:zw.X(D),

=1

where kg is the geodesic curvature along 0D. If D is a geodesic triangle
in M, and 9D is a closed curve composed of three geodesic segments, then
X(D) =1 and therefore

a1+oz2+a3—7rz/ Kdo.
D

5 Lie Groups

5.1 Lie Groups
Definition 5.1.1 Let G be a nonempty set. If

1. G is a group;

2. G is an r-dimensional smooth manifold; and

3. the inverse map 7 : G — G such that 7(g) = g~ ! and the multiplication

map ¢ : G x G — G such that ¢(g1,92) = g1 - g2 are both smooth
maps,

then G is called an r-dimensional Lie group.

Since 72 = id : G — @G, 7 is a diffeomorphism from G to itself. For
ginG, the right translation by g on G is R, : G — G such that Ry(x) =
¢(x,g) = = - g, and the left translation is L, : G — G such that

Ly(z) = ¢(g,2) = g - .

Since the inverse of Ly is L1 and the inverse of Ry is Ry-1, Ly and R, are
both diffeomorphisms from G to itself.

If G1, G5 are Lie groups, then the product manifold G; x G5 can also
be viewed as the product of groups. Therefore G; x GG is also a Lie group,
called the direct product of the Lie groups G; and Gs.

Example 5.1.1 GL(n;R) is the set of nondegenerate n x n real matrices
with matrix multiplication for its group operation. Since GL(n;R) is an
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open subset of R"Q, it has the differentiable structure induced from R™.
Suppose ' ‘
A= (A]), B=(B]))e GL(n;R).

Then ‘ ‘
(4-B)] = A'B]
Since the right hand side is a polynomial of the elements of the matrices A

and B, the map
pv(A,B)=A-B

is smooth. Moreover, since the elements of A~! are rational functions of
the elements Ag , the inverse map is also smooth. Hence GL(n;R) is an
n?-dimensional Lie group, called the general linear group. Similarly the
multiplicative group GL(n;C) of nondegenerate n x n complex matrices is
a 2n?-dimensional Lie group.

Example 5.1.2 Suppose G is a Lie group and H is a subgroup of G. If
H is regular submanifold of G, then it can be shown that the restrictions of
the multiplicaiton map and the inverse map, namely

Olpxg: HxH — H, 7|g:H — H,

are both smooth.
Suppose
SL(n;R) = {A € GL(n;R) | det A = 1}
and
O(n;R) = {A € GL(n;R) | A- AT =T},

Then SL(n;R) and O(n;R) are both subgroups and regular submanifolds of
GL(n;R). Therefore they are Lie groups. SL(n;R) and O(n;R) are called
the special linear group and the real orthogonal group, respectively.

Suppose G is an r-dimensional Lie group with identity e. Since for every
a € G, the map R,-1 is a diffeomorphism from G to itself that takes a to
e, the tangent map (R,-1). : G4 — G is a linear isomorphism, where G, is
the tangent space of G at a. Suppose X € G,. Let

W(X) = (Ry-1). X,

Then w is a differential 1-form defined on G with values in G, called the
right fundamental differential form or Maurer-Cartan form of the
Lie group G. If we choose a basis §;,1 < i < r for G, then we may write

w = w';,
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where w?,1 < i < r are r differential 1-forms on G that are linearly inde-
pendent everywhere.

Choose a local coordinate system (U;x%) and (W;y%) at points e and
a, respectively. When U is sufficiently small, there exists a neighborhood
W1 € W of a such that (U x W) C W. Choose

0
Ozt

i

e
and let

o' (z,y) =y op(x,y), (z,y) €U x W)
Then the isomorphism (R,)« : Ge — G, is given as

¢’ (x, a) 9
Ry).0; = ——————= - —
(Fa) ox* w—e O0Y7|,
Because
(Rg-1)x 0 (Ra)s« =1d : Ge — Ge,
we have 5
(Ra—l)* ayz . = Ai(a)éj

Where (Az (a)) is the inverse matrix of ((9p*(z,a)/0y’)s=c). Therefore
w' = Ai(a) - dy,
hence w' is a smooth differential 1-form.

Theorem 5.1.1 Suppose ¢ : G — G is a smooth map. If ¢ is a right
translation of the Lie group G, then it preserves the right fundamental
differential form, i.e.,

oWl =wt, 1<i<r.

Proof. Suppose o is the right translation R, for some x € G. Then for any
X € GG, we have

((Rz)"w)(X) = w((Rq).X)
(

Hence
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Because doo* = ¢* od holds for any smooth map o : G — G, dw' is still
invariant under right-translation. Let

dwl = —5 Z'kwj /\wk7

where

Because w’ and dw’ are both right-invariant, the cék are constants, called
the structure constants of the Lie group. The above equation is called the
structure equation or the Maurer-Cartan equation of the Lie group

G.

Theorem 5.1.2 The structure constants cék satisfy the Jacobi identity
CiChy + GGy, + ichy, = 0.

Proof. Exteriorly differentiating

WA Wk,

dwi = —ic‘]k

we get
1, Pk k
O:—icjk(dw AW —w! A dw®)
1.
= gc;kc?dwh Awh AWk
Loi g doadi d o Al A Wk
= 6(cjk, w T it + Cic )W Awt Aw”

The terms inside the parentheses are skew-symmetric with respect to k, h, (.
Hence the Jacobi identity follows. O

Definition 5.1.2 Suppose X is a smooth tangent vector field on a Lie
group G. If, for any a € G, we have

(Ro): X = X,

then we say that the tangent vector field X is a right-invariant vector
field on G.
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Choose an arbitrary tangent vector X, € Ge, and let X, = (R,)«X, for
each a € G. Then we obtain a smooth tangent vector field X on G. For any
a,xr € G, we have

(Rx)*Xa = (Rm)* © (Ra)*Xe = (Raac)*Xe = Xa;r;

hence X is right-invariant. Let X; denote the right-invariant vector field
obtained by the right translation of §; € Ge. Then the X;,1 < ¢ < r are
tangent vector fields which are linearly independent everywhere on G, and
any right-invariant vector field on G can be expressed as a linear combina-
tion of the X; with constant coefficients. Hence the set of right-invariant
vector fields on GG forms an r-dimensional vector space, denoted by G, and
is isomorphic to Ge.
By the construction of X; we have

w(XZ) = 52',

that is,

wj(XZ') = (Xi,wj> = (SJ

2.
Thus the fundamental differential forms w’,1 < i < r and the right-invariant
vector fields X;,1 < j < r constitute sets of mutually dual coframe fields
and frame fields, respectively, on the Lie group G. Therefore a tangent
vector field X on G is right-invariant if and only if the value of the right
fundamental form on X is constant.

Theorem 5.1.3 If XY are right-invariant vector fields on G, then [X,Y]
is also a right-invariant vector field on G.

Proof. First we have
(X A Y7 dwl> - X<Y7wl> - Y<X7wz> - <[X7 Y]7wi>

from Lemma 3.1.3. From the structure equation we obtain

. 1. . o
(X NY,dw") = —5 (X AY, W Awk) = —c;kw](X)wk(Y).

Since X,Y are both right-invariant vector fields, we have w’(X),w*(Y) are
both constant. Therefore

WX, Y]) = ey (X)H(Y)

is also constant. This implies that [X,Y] is right-invariant. O
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The Poisson bracket is then closed in G and defines a multiplication
operation on G, which satisfies the following conditions:

1. Distributive Law: [a1 X + a2 X2, Y] = a1[ X1, Y] + a2 X2, Y];
2. Skew-symmetric Law: [X,Y] = —[Y, X];
3. Jacobi Identity: [X,[Y, Z]] + [V, [Z, X]] + [Z.[X, Y]] = 0.

If an n-dimensional real vector space has a multiplication operation satis-
fying the distributive law, the skew-symmetric law and the Jacobi identity,
then we call it an n-dimensional Lie algebra. Then vector space G of all
right-invariant vector fields on a Lie group G is an r-dimensional Lie algebra,
called the Lie algebra of the Lie group G.

The structure constants of a Lie group provide the multiplication table
for its Lie algebra G. In fact, by the proof of the Theorem 5.1.3, we have

wl([ijXk]) = C;kv
and then '
[Xj,Xk] = C;sz

The skew-symmetry of the structure constants cék with respect to the lower
indices and the Jacobi identity satisfied by these constants correspond to
the skew-symmetry of the Poisson bracket and its Jacobi identity. Thus if
we let

[0, 0] = i,

then G, also becomes an r-dimensional Lie algebra, and G, and G are iso-
morphic as Lie algebras. Usually the Lie algebra G, is also called the Lie
algebra of the Lie group G.

Example 5.1.3 Suppose A = (Ai) € GL(n;R). Then A{, 1<i,j7<nis
a coordinate system on the manifold GL(n;R), and then dAg, 1<i,57<n
gives a coframe field on GL(n;R). The right fundamental differential form
of GL(n;R) can be written as

w=dA- AL
Exterior differentiation then yields
dw=—-dAANdA™ = —(dA-A"HA(A-dA7Y)
=[dA-AHAWAA-AH =wAw.
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Let gl(n;R) denote the tangent space at the identity element I in the
Lie group GL(n;R). It is the n?-dimensional vector space with n x n real
matrices as its elements. In this representation, gl(n; R) has a basis E, 1 <
t,J < n, where Ef denote the n x n matrix with the value 1 for the element
at the intersection of the j-th row and the i-th column, and 0 for other
entries. Hence we may write

w = (JJZE; = (wf)
From
dw=wAw

we have

i i7qYs 1YsY%

. 1 , A
mﬂ:ﬁA%ziwwy—ﬂM%@Aﬁ.
Hence the structure constants of the Lie group GL(n;R) are

(7'7.7) _ D CT ST r e
Clps)(rg) = —0i 0g05 + 070305,

The multiplication table for the Lie algebra gl(n;R) is then
[E%, B = 00E; — 6.EL = Ey - EY — EY - E.
Suppose A, B € gl(n;R), then the above formula implies that
[A,B|]=B-A—A-B.

Definition 5.1.3 Suppose G, H are two Lie groups. If there is a smooth
map f : H — G which is also a homomorphism between the groups, then
f is called a homomorphism of Lie groups from H to G. If f is also a
diffeomorphism, then it is called an isomorphism of Lie groups from H to

G.

Theorem 5.1.4 Suppose f: H — G is a Lie group homomorphism, then
f induces a homomorphism f, : H — G between the Lie algebras. If f
is a Lie group isomorphism, then f, is an isomorphism betweeen the Lie
algebras.

Proof. Let f, denote the tangent map of the smooth map f. First we show
that f. maps the right-invariant vector fields of the Lie group H to the
right-invariant vector fields of the Lie group G. Choose any X, € H., and
let Yo = fiX. € Ge, where e is the identity element of H and e’ = f(e)
is the identity element of G. Let X,Y be the right-invariant vector fields
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generated by X, Y. on their respective Lie groups. Then for any a € H,
we have

JeXa = fio (Ra)*Xe = (Ra’)* o fiXe = (Ra’)*Ye’ =Y,

where a’ = f(a) € G. Thus the image of a right-invariant vector fields on
H under f, can be extended to a right-invariant vector field on G. Use
the notation f, : H — G for this correspondence. Since the tangent map
fx commutes with the Poisson bracket product of vector fields. Hence f, :
H — G defined above is a homomorphism between Lie algebras.

When f is an isomorphism between Lie groups, f. is also invertible and
hence is an isomorphism between Lie algebras. O

Suppose G is an r-dimensional Lie group. A homomorphism from the
Lie group G to GL(n;R) is called a representation of order n of the Lie
group G. A natural representation of order r for each r-dimensional Lie
group can be defined as follows.

Suppose x € G, and let

az(g)=z-g -2 =Ly 0 R,1(g).

Then «a;, is an automorphism of the Lie group G, called the inner automor-
phism of G. The tangent map (ay)« of a, determines an automorphism
of the Lie algebra G.. Let Ad(z) = (ag)« : Ge — Ge, then Ad(z) is a
nondegenerate linear transformation on the linear space G, and is therefore
an element of GL(r;R). Hence we obtain a map Ad : G — GL(r;R). It
can be verified that Ad is a homomorphism between groups. If we use local
coordinates, Ad is given by smooth functions of the local coordinates, hence
Ad is a homomorphism between Lie groups.

Definition 5.1.4 The Lie group homomorphism Ad : G — GL(r; R) given
above is called the adjoint representation of the Lie group G.

The tangent map of the adjoint representation Ad : G — GL(r;R) in-
duces a homomorphism ad from the Lie algebra G to gl(r;R), called the
adjoint representation of the Lie algebra G. of the Lie group G. Since
gl(r;R) can be viewed as a set of linear transformations on G, the adjoint

representation ad actually assigns to each X € G, a linear transformation
ad(X) on Ge.
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