

Differential Geometry

Miris Li

April 7, 2025

This document is the study note of the book [1].

1 Differentiable Manifolds

1.1 Tangent Spaces

Suppose M is an m -dimensional smooth manifold. Fix a point $p \in M$. Denote the set of all C^∞ functions defined in a neighborhood of p by C_p^∞ . Define a relation \sim in C_p^∞ as follows. Suppose $f, g \in C_p^\infty$. Then $f \sim g$ if and only if there exists an open neighborhood H of the point p such that $f|_H = g|_H$. Obviously \sim is an equivalence relation in C_p^∞ . The equivalence class of f is denoted by $[f]$, called a **C^∞ -germ** at p on M . Let

$$\mathcal{F}_p = C_p^\infty / \sim = \{[f] \mid f \in C_p^\infty\}.$$

Then \mathcal{F}_p is a linear space over \mathbb{R} with regular addition and scalar multiplication.

For a parametrized curve γ in M through a point p , there exists a positive number δ such that $\gamma : (-\delta, \delta) \rightarrow M$ is C^∞ with $\gamma(0) = p$. Denote the set of all these parametrized curves by Γ_p .

We introduce a pairing between Γ_p and \mathcal{F}_p by letting

$$\langle \gamma, [f] \rangle = \left. \frac{d(f \circ \gamma)}{dt} \right|_{t=0}$$

for each $\gamma \in \Gamma_p$ and $[f] \in \mathcal{F}_p$. This pairing is well-defined and linear in the second variable. Let

$$\mathcal{H}_p = \{[f] \in \mathcal{F}_p \mid \langle \gamma, [f] \rangle = 0, \forall \gamma \in \Gamma_p\}$$

be a linear subspace of \mathcal{F}_p .

Theorem 1.1.1 Suppose $[f] \in \mathcal{F}_p$. For a chart (U, φ) , let $F = f \circ \varphi^{-1}$ be a function from an open subset of \mathbb{R}^m to \mathbb{R} . Then $[f] \in \mathcal{H}_p$ if and only if

$$\frac{\partial F}{\partial x^i} \Big|_{\varphi(p)} = 0, \quad 1 \leq i \leq m.$$

Definition 1.1.1 The quotient space $\mathcal{F}_p/\mathcal{H}_p$ is called the **cotangent space** of M at p , denoted by T_p^* or $T_p^*(M)$. The \mathcal{H}_p -equivalence class of the C^∞ -germ $[f]$ is denoted by $(df)_p$, called a **cotangent vector** on M at p .

The cotangent space T_p^* is a linear space with the linear structure induced from \mathcal{F}_p .

Theorem 1.1.2 Suppose $f^1, f^2, \dots, f^s \in C_p^\infty$ and $F(y^1, y^2, \dots, y^s)$ is a smooth function in a neighborhood of $(f^1(p), f^2(p), \dots, f^s(p)) \in \mathbb{R}^s$. Then $f = F(f^1, f^2, \dots, f^s) \in C_p^\infty$ and

$$(df)_p = \sum_{k=1}^s \left[\frac{\partial F}{\partial y^k}(f^1(p), f^2(p), \dots, f^s(p)) \cdot (df^k)_p \right].$$

Corollary 1.1.3 For any $f, g \in C_p^\infty, a \in \mathbb{R}$, we have

1. $(d(f+g))_p = (df)_p + (dg)_p$,
2. $(d(af))_p = a \cdot (df)_p$, and
3. $(d(fg))_p = f(p) \cdot (dg)_p + g(p) \cdot (df)_p$.

Choose a chart (U, φ) and define local coordinates u^i by $u^i(p) = (\varphi(p))^i = x^i \circ \varphi(p), p \in U$, where x^i is the standard coordinate system of \mathbb{R}^m . Then $u^i \in C_p^\infty$ and $(du^i)_p \in T_p^*$, $1 \leq i \leq m$. Choose $\lambda_k \in \Gamma_p, 1 \leq k \leq m$ such that

$$u^i \circ \lambda_k(t) = u^i(p) + \delta_k^i t.$$

Then we have

$$\langle \lambda_k, [u^i] \rangle = \frac{d}{dt} (u^i \circ \lambda_k(t)) \Big|_{t=0} = \delta_k^i.$$

Theorem 1.1.4 $\{(du^i)_p, 1 \leq i \leq m\}$ is a basis of T_p^* , called the **natural basis** of T_p^* with respect to the local coordinate system u^i . It then follows that $\dim T_p^* = m$.

Proof. By Theorem 1.1.2, for each $f \in C_p^\infty$, $(df)_p$ is a linear combination of the $(du^i)_p$, $1 \leq i \leq m$.

If there exist real numbers a_i , $1 \leq i \leq m$ such that

$$\sum_{i=1}^m a_i (du^i)_p = 0,$$

then for any $\gamma \in \Gamma_p$, we have

$$\left\langle \gamma, \sum_{i=1}^m a_i [u^i] \right\rangle = \sum_{i=1}^m a_i \left. \frac{d(u^i \circ \gamma(t))}{dt} \right|_{t=0} = 0.$$

Let $\gamma = \lambda_k$ and we will obtain $a_k = 0$, $1 \leq k \leq m$, i.e. $\{(du^i)_p, 1 \leq i \leq m\}$ is linearly independent. Therefore it forms a basis for T_p^* . \square

We can simply define the pairing between Γ_p and T_p^* by

$$\langle \gamma, (df)_p \rangle = \langle \gamma, [f] \rangle$$

for each $\gamma \in \Gamma_p$ and $(df)_p \in T_p^*$ after the definition of \mathcal{H}_p and T_p^* . Define a relation \sim on Γ_p as follows. Suppose $\gamma, \gamma' \in \Gamma_p$. Then $\gamma \sim \gamma'$ if and only if for any $(df)_p \in T_p^*$,

$$\langle \gamma, (df)_p \rangle = \langle \gamma', (df)_p \rangle.$$

This is again an equivalence relation. Denote the equivalence class of γ by $[\gamma]$. We can then define

$$\langle [\gamma], (df)_p \rangle = \langle \gamma, (df)_p \rangle$$

without chance of confusion.

Theorem 1.1.5 The $\langle [\gamma], \cdot \rangle$, $\gamma \in \Gamma_p$ represent the totality of linear functionals on T_p^* and form its dual space, T_p , called the **tangent space** of M at p . Elements of the tangent space are called **tangent vectors** of M at p .

Proof. Suppose α is a linear functional on T_p^* . Let $\xi^i = \alpha(du^i)_p$, $1 \leq i \leq m$. Choose $\gamma \in \Gamma_p$ such that

$$u^i(t) = u^i(p) + \xi^i t.$$

Then

$$\langle [\gamma], (df)_p \rangle = \sum_{i=1}^m \xi^i \left. \frac{\partial(f \circ \varphi^{-1})}{\partial u^i} \right|_{\varphi(p)} = \alpha(df)_p.$$

Therefore each linear functional on T_p^* can be expressed as $\langle [\gamma], \cdot \rangle$ for some $\gamma \in \Gamma_p$. Moreover, if $\langle [\gamma], \cdot \rangle$ and $\langle [\gamma'], \cdot \rangle$ are the same linear functionals on T_p^* , then $[\gamma] = [\gamma']$. Therefore, we can identify the space of $[\gamma], \gamma \in \Gamma_p$ with the dual space of T_p^* . \square

The pairing $\langle X, (df)_p \rangle, X = [\gamma] \in T_p, (df)_p \in T_p^*$ is a bilinear map from $T_p \times T_p^*$ to \mathbb{R} . Noting that

$$\langle [\lambda_k], (du^i)_p \rangle = \delta_k^i, \quad 1 \leq i, k \leq m,$$

$\{[\lambda_k], 1 \leq k \leq m\}$ is the basis of T_p dual to the basis $\{(du^i), 1 \leq i \leq m\}$ of T_p^* . The tangent vectors can also be seen as functions from C_p^∞ to \mathbb{R} . For a general $f \in C_p^\infty$, we have

$$\langle [\lambda_k], (df)_p \rangle = \left\langle [\lambda_k], \sum_{i=1}^m \left[\left(\frac{\partial f}{\partial u^i} \right)_p \cdot (du^i)_p \right] \right\rangle = \left(\frac{\partial f}{\partial u^k} \right)_p,$$

where $(\partial f / \partial u^i)_p$ means $(\partial(f \circ \varphi^{-1}) / \partial x^i)_{\varphi(p)}$. Thus the $[\lambda_k]$ can be identified with the partial differential operators $(\partial / \partial u^k)_p$ on the space C_p^∞ . The basis $\{(\partial / \partial u^k)_p, 1 \leq k \leq m\}$ is called the **natural basis** of T_p with respect to the local coordinate system u^i .

The lower index p of tangent and cotangent vectors can be suppressed for simplicity if there is no chance of confusion.

Definition 1.1.2 Suppose $X \in T_p, f \in C_p^\infty$. Then $(df)_p \in T_p^*$ is called the **differential** of f at the point p . Denote $Xf = \langle X, df \rangle$, then Xf is called the **directional derivative** of the function f along the vector X .

Theorem 1.1.6 Suppose $X \in T_p, f, g \in C_p^\infty, \alpha, \beta \in \mathbb{R}$. Then

1. $X(\alpha f + \beta g) = \alpha Xf + \beta Xg$;
2. $X(fg) = f(p)X(g) + g(p)X(f)$.

The above properties of tangent vectors also give an alternative definition of tangent vectors.

Smooth maps between smooth manifolds induce linear maps between tangent spaces and between cotangent spaces. Suppose $F : M \rightarrow N$ is a smooth map, $p \in M, q = F(p) \in N$. Define the map $F^* : T_q^*(N) \rightarrow T_p^*(M)$ by $F^*(df) = d(f \circ F), df \in T_q^*(N)$. This is a well-defined linear map, called the **differential** of the map F . The adjoint of F^* , namely the map $F_* : T_p(M) \rightarrow T_q(N)$ given by

$$\langle F_*X, a \rangle = \langle X, F^*a \rangle, \quad X \in T_p(M), a \in T_q^*(N),$$

is called the **tangent map** induced by F .

Suppose u^i and v^α are local coordinates near p and q , respectively. Then the map F can be expressed near p by the functions

$$F^\alpha(u^1, \dots, u^m) = v^\alpha \circ F(u^1, \dots, u^m), \quad 1 \leq \alpha \leq n.$$

Then the action of F^* on the natural basis $\{\mathrm{d}v^\alpha, 1 \leq \alpha \leq n\}$ is given by

$$F^*(\mathrm{d}v^\alpha) = \mathrm{d}F^\alpha = \sum_{i=1}^m \left(\frac{\partial F^\alpha}{\partial u^i} \right)_p \cdot \mathrm{d}u^i.$$

Hence the matrix representation of F^* in the natural bases $\{\mathrm{d}v^\alpha\}$ and $\{\mathrm{d}u^i\}$ is exactly the Jacobian matrix $((\partial F^\alpha / \partial u^i)_p)$. Similarly, the action of F_* on the natural basis $\{\partial/\partial u^i, 1 \leq i \leq m\}$ is given by

$$\begin{aligned} \left\langle F_* \left(\frac{\partial}{\partial u^i} \right), \mathrm{d}v^\alpha \right\rangle &= \left\langle \frac{\partial}{\partial u^i}, F^*(\mathrm{d}v^\alpha) \right\rangle \\ &= \sum_{j=1}^m \left(\frac{\partial F^\alpha}{\partial u^j} \right)_p \left\langle \frac{\partial}{\partial u^j}, \mathrm{d}u^i \right\rangle \\ &= \left(\frac{\partial F^\alpha}{\partial u^i} \right)_p \\ &= \sum_{\beta=1}^n \left(\frac{\partial F^\beta}{\partial u^i} \right)_p \left\langle \frac{\partial}{\partial v^\beta}, \mathrm{d}v^\alpha \right\rangle \\ &= \left\langle \sum_{\beta=1}^n \left(\frac{\partial F^\beta}{\partial u^i} \right)_p \left(\frac{\partial}{\partial v^\beta} \right), \mathrm{d}v^\alpha \right\rangle, \end{aligned}$$

i.e.

$$F_* \left(\frac{\partial}{\partial u^i} \right) = \sum_{\beta=1}^n \left(\frac{\partial F^\beta}{\partial u^i} \right)_p \left(\frac{\partial}{\partial v^\beta} \right).$$

Therefore the matrix representation of F_* in the natural bases $\{\partial/\partial u^i\}$ and $\{\partial/\partial v^\alpha\}$ is still the Jacobian matrix $((\partial F^\alpha / \partial u^i)_p)$.

1.2 Submanifolds

Using the Inverse Function Theorem for \mathbb{R}^n and the local coordinate systems of manifolds, we can obtain the following generalization for manifolds.

Theorem 1.2.1 Suppose M and N are both n -dimensional smooth manifolds, and $f : M \rightarrow N$ is a smooth map. If at a point $p \in M$, the tangent map $f_* : T_p(M) \rightarrow T_{f(p)}(N)$ is an isomorphism, then there exists a neighborhood U of p in M such that $V = f(U)$ is a neighborhood of $f(p)$ in N and $f|_U : U \rightarrow V$ is a diffeomorphism.

If M is an m -dimensional manifold and N an n -dimensional manifold, $f : M \rightarrow N$ is smooth, and the tangent map f_* is injective at a point p , then f_* is said to be **nondegenerate** at p . In this case, we have $m \leq n$, and the rank of the Jacobian matrix of f at p is m .

Theorem 1.2.2 Suppose M is an m -dimensional manifold and N an n -dimensional manifold, $m < n$. If $f : M \rightarrow N$ is a smooth map and the tangent map f_* is nondegenerate at a point p in M , then there exist local coordinate systems $(U; u^i)$ near p and $(V; v^\alpha)$ near $q = f(p)$ such that $f(U) = V$, and the map $f|_U$ can be expressed by local coordinates as

$$\begin{cases} v^i(f(x)) = u^i(x), & 1 \leq i \leq m; \\ v^\gamma(f(x)) = 0, & m + 1 \leq \gamma \leq n. \end{cases}$$

for each $x \in U$.

Proof. Take local coordinate systems $(U; u^i)$ and $(V; v^\alpha)$ at p and q , respectively, such that $u^i(p) = 0$ and $v^\alpha(q) = 0$. Since f_* is nondegenerate at p , we may assume that

$$\frac{\partial(f^1, f^2, \dots, f^m)}{\partial(u^1, u^2, \dots, u^m)} \Big|_{u^i=0} \neq 0.$$

Let $I_{n-m} = \{(w^{m+1}, \dots, w^n) \mid |w^\gamma| \leq \delta, m + 1 \leq \gamma \leq n\}$, where δ is a sufficiently small positive number. By suitably shrinking the neighborhood U , we can define a smooth map $\tilde{f} : U \times I_{n-m} \rightarrow V$ such that

$$\begin{cases} \tilde{f}^i(u^1, \dots, u^m, w^{m+1}, \dots, w^n) = f^i(u^1, \dots, u^m), & 1 \leq i \leq m; \\ \tilde{f}^\gamma(u^1, \dots, u^m, w^{m+1}, \dots, w^n) = w^\gamma + f^\gamma(u^1, \dots, u^m), & m + 1 \leq \gamma \leq n. \end{cases}$$

The Jacobian matrix of \tilde{f} at $(u^i, w^\gamma) = (0, 0)$ is nondegenerate. It follows by Theorem 1.2.1 that \tilde{f} is a diffeomorphism in a neighborhood of $(0, 0)$. We may assume that $\tilde{f} : U \times I_{n-m} \rightarrow V$ is a diffeomorphism. Then there exists a coordinate system \bar{v}^α in the neighborhood V of q such that \tilde{f} is expressed as

$$\begin{cases} \bar{v}^i(\tilde{f}(u^1, \dots, u^m, w^{m+1}, \dots, w^n)) = u^i, & 1 \leq i \leq m; \\ \bar{v}^\gamma(\tilde{f}(u^1, \dots, u^m, w^{m+1}, \dots, w^n)) = w^\gamma, & m + 1 \leq \gamma \leq n. \end{cases}$$

Thus the local coordinate systems $(U; u^i)$ and $(V; \bar{v}^\alpha)$ are the desired. \square

Definition 1.2.1 Suppose M and N are smooth manifolds. If there is a smooth map $\varphi : M \rightarrow N$ such that the tangent map $\varphi_* : T_p(M) \rightarrow T_{\varphi(p)}(N)$ is nondegenerate at any point $p \in M$, then φ is called an **immersion**, and (φ, M) an **immersed submanifold** of N . Furthermore, if φ is also injective, then (φ, M) is called a **smooth submanifold**, or **imbedded submanifold**, of N .

By Theorem 1.2.2, an immersion is locally injective, but not necessarily so globally.

Example 1.2.1 Suppose U is an open subset of N . By restricting the smooth structure of N to U , we obtain a smooth structure on U , which makes U a smooth manifold with the same dimension as N . Let $\varphi : U \rightarrow N$ be the inclusion map, then (φ, U) becomes an imbedded submanifold of N , called an **open submanifold** of N .

Example 1.2.2 Suppose (φ, M) is a smooth submanifold of N . If

1. $\varphi(M)$ is a closed subset of N ;
2. for any point $q \in \varphi(M)$, there exists a local coordinate system $(U; u^i)$ such that $\varphi(M) \cap U$ is defined by

$$u^{m+1} = u^{m+2} = \dots = u^n = 0,$$

where $m = \dim M$,

then we call (φ, M) a **closed submanifold** of N .

For an imbedded submanifold (φ, M) , since φ is injective, the differentiable structure of M can be transported to $\varphi(M)$, making $\varphi : M \rightarrow \varphi(M)$ a diffeomorphism. On the other hand, being a subset of N , $\varphi(M)$ has an induced topology from N . The topology on $\varphi(M)$ obtained from M through φ is not necessarily the same as the one induced from N .

Definition 1.2.2 Suppose (φ, M) is a smooth submanifold of N . If $\varphi : M \rightarrow \varphi(M) \subset N$ is a homeomorphism, then (φ, M) is called a **regular submanifold** of N , and φ is called a **regular imbedding** of M into N .

Theorem 1.2.3 Suppose (φ, M) is an m -dimensional submanifold of an n -dimensional smooth manifold of N . Then (φ, M) is a regular submanifold of N if and only if it is a closed submanifold of an open submanifold of N .

Proof. First we show that a closed submanifold (φ, M) of N is a regular submanifold. Choose an arbitrary point $p \in M$. There exists a local coordinate system $(V; v^\alpha)$ at the point $q = \varphi(p)$ in N such that $\varphi(M) \cap V$ is defined by

$$v^{m+1} = v^{m+2} = \cdots = v^n = 0.$$

Since φ is continuous, there exists a local coordinate system $(U; u^i)$ such that $\varphi(U) \subset V$. We may assume that $u^i(p) = 0, v^\alpha(q) = 0$, and $V = \{(v^1, \dots, v^n) \mid |v^\alpha| < \delta\}$, where δ is a positive number. Thus $\varphi(U) \subset \varphi(M) \cap V$.

The goal is to prove that $\varphi^{-1} : \varphi(M) \subset N \rightarrow M$ is also continuous. The map $\varphi|_U$ can be expressed locally by

$$\begin{cases} v^i = \varphi(u^1, \dots, u^m), & 1 \leq i \leq m; \\ v^\gamma = 0, & m+1 \leq \gamma \leq n. \end{cases}$$

Since φ_* is nondegenerate at p , the Jacobian

$$\left. \frac{\partial(\varphi^1, \varphi^2, \dots, \varphi^m)}{\partial(u^1, u^2, \dots, u^m)} \right|_{u^i=0} \neq 0.$$

By the Inverse Function Theorem, there exists δ_1 with $0 < \delta_1 < \delta$ such that there is an inverse function set

$$u^i = \psi^i(v^1, \dots, v^m), \quad |v^i| < \delta_1$$

of the function set $(\varphi^1, \dots, \varphi^m)$. Let $V_1 = \{(v^1, \dots, v^n) \mid |v^\alpha| < \delta_1\}$, then the entire preimage of $\varphi(M) \cap V$ under φ is contained in U . Hence $\varphi : M \rightarrow \varphi(M) \subset N$ is a homeomorphism, which implies that (φ, M) is a regular submanifold of N .

Conversely, suppose (φ, M) is a regular submanifold of N . Let $p \in M$. Then for any neighborhood $U \subset M$ of p , there exists a neighborhood V of $q = \varphi(p)$ in N such that $\varphi(U) = \varphi(M) \cap V$. By Theorem 1.2.2, there exist local coordinate systems $(U_1; u^i)$ for p and $(V_1; v^\alpha)$ for q such that $\varphi(U_1) \subset V_1$, and $\varphi|_{U_1}$ can be expressed in local coordinates as

$$\varphi(u^1, \dots, u^m) = (u^1, \dots, u^m, 0, \dots, 0).$$

We may assume that $U_1 \subset U$. Hence we can choose $V_1 \subset V$ with $\varphi(U_1) = \varphi(M) \cap V_1$. Here we can see that $\varphi(M) \cap V$ is actually defined by

$$v^{m+1} = \cdots = v^n = 0.$$

For each $q \in \varphi(M)$, use V_q to represent the corresponding neighborhood V_1 of q in N defined above. Let $W = \bigcup_{q \in \varphi(M)} V_q$. It is obvious that W is an open submanifold of N containing $\varphi(M)$. We only need to show that $\varphi(M)$ is relatively closed in W , or equivalently, $\overline{\varphi(M)} \cap W = \varphi(M)$. Choose any point $s \in \overline{\varphi(M)} \cap W$. Then there exists $q \in \varphi(M)$ such that $s \in V_q$. By the choice of V_q , $\varphi(M) \cap V_q$ is a relatively closed subset of V_q . Since $s \in \overline{\varphi(M)} \cap V_q$, we have $s \in \varphi(M) \cap V_q$. Therefore $\overline{\varphi(M)} \cap W \subset \varphi(M)$. This proves that (φ, M) is a closed submanifold of the open submanifold W of N . \square

Theorem 1.2.4 Suppose (φ, M) is a submanifold of a smooth manifold N . If M is compact, then $\varphi : M \rightarrow N$ is a regular imbedding.

Proof. Because $\varphi : M \rightarrow \varphi(M) \subset N$ is a continuous bijection from a compact space to a Hausdorff space, it must be a closed map and then a homeomorphism. Therefore, (φ, M) is a regular submanifold of N by definition. \square

2 Exterior Differential Calculus

2.1 Tensor Bundles and Vector Bundles

Suppose M is an m -dimensional smooth manifold, T_p and T_p^* are the tangent and cotangent space of M at p . Then there is an (r, s) -type tensor space

$$T_s^r(p) = \underbrace{T_p \otimes \cdots \otimes T_p}_{r \text{ terms}} \otimes \underbrace{T_p^* \otimes \cdots \otimes T_p^*}_{s \text{ terms}}$$

of M at p , which is an m^{r+s} -dimensional vector space. Let

$$T_s^r = \bigcup_{p \in M} T_s^r(p).$$

We will introduce a topology on T_s^r so that it becomes a Hausdorff space with a countable basis, and then define a smooth structure to make it a smooth manifold.

Suppose V is an m -dimensional vector space over \mathbb{R} . Choose a basis $\{e_1, e_2, \dots, e_m\}$ in V , and then each element $y \in V$ can be expressed as a row coordinate vector

$$y = (y^1, y^2, \dots, y^m).$$

The space V_s^r of all (r, s) -type tensors on V has a basis

$$e_{i_1} \otimes e_{i_2} \otimes \cdots e_{i_r} \otimes e^{*j_1} \otimes e^{*j_2} \otimes \cdots e^{*j_s}, \quad 1 \leq i_\alpha, j_\beta \leq m.$$

Thus the elements of V_s^r can also be expressed by components.

Consider a coordinate neighborhood U on M with local coordinates u^1, \dots, u^m . Then for any $p \in U$,

$$\left(\frac{\partial}{\partial u^{i_1}} \right)_p \otimes \cdots \otimes \left(\frac{\partial}{\partial u^{i_r}} \right)_p \otimes (du^{j_1})_p \otimes \cdots \otimes (du^{j_s})_p, \quad 1 \leq i_\alpha, j_\beta \leq m$$

forms a basis of $T_s^r(p)$. We can define a map

$$\varphi_U : U \times V_s^r \rightarrow \bigcup_{p \in U} T_s^r(p)$$

such that for any $p \in U, 1 \leq i_\alpha, j_\beta \leq m$, we have

$$\begin{aligned} & \varphi_U(p, e_{i_1} \otimes \cdots e_{i_r} \otimes e^{*j_1} \otimes \cdots e^{*j_s}) \\ &= \left(\frac{\partial}{\partial u^{i_1}} \right)_p \otimes \cdots \otimes \left(\frac{\partial}{\partial u^{i_r}} \right)_p \otimes (du^{j_1})_p \otimes \cdots \otimes (du^{j_s})_p \in T_s^r(p). \end{aligned}$$

Such a φ_U is a one-to-one correspondence.

Choose a coordinate covering $\{U_1, U_2, \dots\}$ of M , with corresponding maps $\{\varphi_1, \varphi_2, \dots\}$. Let the set of images of all open subsets of $U_i \times V_s^r$ under the map φ_i be a topological basis for T_s^r . Such a topology makes T_s^r into a Hausdorff space with a countable basis, and each map φ_i is then a homeomorphism.

Fix a point $p \in U$. The map $\varphi_{U,p} : V_s^r \rightarrow T_s^r(p)$ defined by

$$\varphi_{U,p}(y) = \varphi_U(p, y), \quad y \in V_s^r$$

is a linear isomorphism. If W is another coordinate neighborhood of M containing p , let

$$g_{UW}(p) = \varphi_{W,p}^{-1} \circ \varphi_{U,p} : V_s^r \rightarrow V_s^r.$$

Then obviously $g_{UW}(p) \in \text{GL}(V_s^r)$. Therefore, for any two coordinate neighborhoods U, W of M with $U \cap W \neq \emptyset$, the map

$$g_{UW} : U \cap W \rightarrow \text{GL}(V_s^r)$$

is well-defined. Moreover, it can be shown that g_{UW} is actually some tensor products of the Jacobian matrix of the change of local coordinates, thus g_{UW} is smooth on $U \cap W$.

Now we construct the smooth structure of T_s^r . First,

$$\{\varphi_1(U_1 \times V_s^r), \varphi_2(U_2 \times V_s^r), \dots\}$$

forms an open covering of T_s^r . The coordinates of a point $\varphi_i(p, y)$ in the coordinate neighborhood $\varphi_i(U_i \times V_s^r)$ are

$$(u_i^\alpha(p), y_{j_1 \dots j_s}^{i_1 \dots i_r}),$$

where u_i^α is a local coordinate in the coordinate neighborhood U_i of the manifold M , and $y_{j_1 \dots j_s}^{i_1 \dots i_r}$ is the component of $y \in V_s^r$ with respect to the basis $e_{i_1} \otimes \dots \otimes e_{i_r} \otimes e^{*j_1} \otimes \dots \otimes e^{*j_s}$ of V_s^r . Noting that for $U_i \cap U_j \neq \emptyset$, $g_{ij} : U_i \cap U_j \rightarrow \text{GL}(V_s^r)$ is smooth, we see that the coordinate covering of T_s^r given above is C^∞ -compatible. Thus T_s^r becomes a smooth manifold. Obviously, the natural projection

$$\pi : T_s^r \rightarrow M,$$

which maps each element in $T_s^r(p)$ to the point $p \in M$, is a smooth surjection. The smooth manifold T_s^r is called a **type (r, s) -tensor bundle** on M , π is called the **bundle projection**, and $T_s^r(p)$ is called the **fiber** of the bundle T_s^r at p .

Letting $r = 1, s = 0$, we get the **tangent bundle** of M , denoted by $T(M)$. Letting $r = 0, s = 1$, we get the **cotangent bundle** of M , denoted by $T^*(M)$. Replacing $T^r(p)$ by $\Lambda^r(T_p)$ and V^r by $\Lambda^r(V)$, and following the above procedure, we can construct **exterior vector bundles**

$$\Lambda^r(M) = \bigcup_{p \in M} \Lambda^r(T_p)$$

on M . Similarly, we can also construct **exterior form bundles**

$$\Lambda^r(M^*) = \bigcup_{p \in M} \Lambda^r(T_p^*)$$

on M .

Suppose $f : M \rightarrow T_s^r$ is a smooth map such that $\pi \circ f = \text{id}_M$, i.e., $f(p) \in T_s^r(p)$ for any $p \in M$, then f is called a **smooth section** of the tensor bundle T_s^r , or a **type (r, s) -smooth tensor field** on M . A section of a tangent bundle is a **tangent vector field** on M , and a section of a cotangent bundle is a **differential 1-form**. A smooth section of the exterior form bundle $\Lambda^r(M^*)$ is called an **exterior differential form** of degree r on M .

Definition 2.1.1 Suppose E, M are two smooth manifolds, and $\pi : E \rightarrow M$ is a smooth surjection. Let V be a q -dimensional vector space. If an open covering $\{U_1, U_2, \dots\}$ of M and a set of maps $\{\varphi_1, \varphi_2, \dots\}$ satisfy the following conditions:

1. Every map φ_i is a diffeomorphism from $U_i \times V$ to $\pi^{-1}(U_i)$, and for any $p \in U_i, y \in V$,

$$\pi \circ \varphi_i(p, y) = p.$$

2. For any fixed $p \in U_i$, let

$$\varphi_{i,p}(y) = \varphi_i(p, y), \quad y \in V.$$

Then $\varphi_{i,p} : V \rightarrow \pi^{-1}(p)$ is a homeomorphism. When $U_i \cap U_j \neq \emptyset$, for any $p \in U_i \cap U_j$,

$$g_{ij}(p) = \varphi_{j,p}^{-1} \circ \varphi_{i,p} : V \rightarrow V$$

is a linear automorphism of V , i.e. $g_{ij}(p) \in \text{GL}(V)$.

3. When $U_i \cap U_j \neq \emptyset$, the map $g_{ij} : U_i \cap U_j \rightarrow \text{GL}(V)$ is smooth.

then (E, M, π) is called a (real) q -dimensional **vector bundle** on M , where E is called the **bundle space**, M is called the **base space**, π is called the **bundle projection**, and V is called the **typical fiber**.

For any $p \in M$, define $E_p = \pi^{-1}(p)$ and call it the **fiber** of the vector bundle E at the point p . For a coordinate neighborhood U_i of M containing p , the linear structure of the typical fiber V can be transported to E_p through the map $\varphi_{i,p}$. Condition 2 ensures that the linear structure of E_p is independent of the choice of U_i and φ_i .

The product manifold $M \times V$ is the most simple example of a vector bundle, called the **trivial bundle** over M , or the **product bundle**.

The map $g_{ij} : U_i \cap U_j \rightarrow \text{GL}(V)$ satisfies the following compatibility conditions:

1. for $p \in U_i$, $g_{ii}(p) = \text{id}_V$;
2. if $p \in U_i \cap U_j \cap U_k \neq \emptyset$, then $g_{ki}(p) \circ g_{jk}(p) \circ g_{ij}(p) = \text{id}_V$.

The set $\{g_{ij}\}$ is called the family of **transition functions** of the vector bundle (E, M, π) .

Theorem 2.1.1 Suppose M is an m -dimensional smooth manifold, $\{U_\alpha\}_{\alpha \in \mathcal{A}}$ is an open covering of M , and V is a q -dimensional vector space. If for any pair of indices $\alpha, \beta \in \mathcal{A}$ where $U_\alpha \cap U_\beta \neq \emptyset$, there exists a smooth map $g_{\alpha\beta} : U_\alpha \cap U_\beta \rightarrow \text{GL}(V)$ that satisfies compatibility conditions, then there exists a q -dimensional vector bundle (E, M, π) which has $\{g_{\alpha\beta}\}$ as its transition functions.

For a vector bundle (E, M, π) with V as its typical fiber, we can construct another vector bundle $(E^*, M, \tilde{\pi})$ with V^* as its typical fiber, whose transition functions are the dual maps of the transition functions of (E, M, π) . The vector bundle E^* is called the **dual bundle** of E . In fact, the cotangent bundle is exactly the dual bundle of the tangent bundle. Similarly, we can construct the **direct sum** and the **tensor product** of vector bundles.

Definition 2.1.2 Suppose $s : M \rightarrow E$ is a smooth map. If $\pi \circ s = \text{id}_M$, then s is called a **smooth section** of the vector bundle (E, M, π) . The set of all smooth sections of the vector bundle (E, M, π) is denoted by $\Gamma(E)$.

Suppose $s, s_1, s_2 \in \Gamma(E)$ and $\alpha \in C^\infty(M)$. For any $p \in M$, let

$$\begin{aligned}(s_1 + s_2)(p) &= s_1(p) + s_2(p), \\ (\alpha s)(p) &= \alpha(p)s(p).\end{aligned}$$

Then $s_1 + s_2$ and αs are also smooth sections of the vector bundle E . This makes $\Gamma(E)$ into a $C^\infty(M)$ -module.

2.2 Exterior Differentiation

Suppose M is an m -dimensional smooth manifold. Let

$$A^r(M) = \Gamma(\Lambda^r(M^*))$$

be the space of the smooth sections of the exterior form bundle $\Lambda^r(M^*)$. The elements of $A^r(M)$ are called **exterior differential r -forms** on M . Similarly, let

$$A(M) = \Gamma(\Lambda(M^*))$$

be the space of all the smooth sections of the vector bundle $\Lambda(M^*)$. The elements of $A(M)$ are called **exterior differential forms** on M . $A(M)$ has the expression as the direct sum

$$A(M) = \sum_{r=0}^m A^r(M).$$

The wedge product \wedge defines a map

$$\wedge : A^r(M) \times A^s(M) \rightarrow A^{r+s}(M)$$

for each r, s which makes $A(M)$ into a **graded algebra**.

Lemma 2.2.1 Suppose (U, φ) is a coordinate chart in a smooth manifold M , $V \neq \emptyset$ is an open set in M with \overline{V} compact, and $\overline{V} \subset U$. Then there exists a smooth function $h : M \rightarrow \mathbb{R}$ such that

1. $0 \leq h \leq 1$;
2. $h(p) = \begin{cases} 1, & p \in V; \\ 0, & p \notin U. \end{cases}$

Theorem 2.2.2 Suppose M is an m -dimensional smooth manifold. Then there exists a unique map

$$d : A(M) \rightarrow A(M)$$

such that $d(A^r(M)) \subset A^{r+1}(M)$ and such that it satisfies the following properties:

1. For any $\omega_1, \omega_2 \in A(M)$, $d(\omega_1 + \omega_2) = d\omega_1 + d\omega_2$.
2. Suppose $\omega_1 \in A^r(M)$, then for any $\omega_2 \in A(M)$,

$$d(\omega_1 \wedge \omega_2) = d\omega_1 \wedge \omega_2 + (-1)^r \omega_1 \wedge d\omega_2.$$

3. If f is a smooth function on M , i.e. $f \in A^0(M)$, then df is precisely the differential of f .
4. If $f \in A^0(M)$, then $d(df) = 0$.

The map d defined above is called the **exterior derivative**.

Proof. First we show that if the exterior operator d exists, then it is a local operator. It suffices to show that $\omega|_U = 0$ implies $(d\omega)|_U = 0$. Choose any point $p \in U$. Then there is an open neighborhood W containing p such that $p \in W \subset \overline{W} \subset U$. By Lemma 2.2.1, there exists a smooth function h on M such that

$$h(p') = \begin{cases} 1, & p \in W; \\ 0, & p \notin U. \end{cases}$$

Thus $h\omega \in A(M)$ and $h\omega = 0$. Therefore

$$dh \wedge \omega + h d\omega = 0,$$

and hence $(d\omega)|_W = 0$. The arbitrariness of p then implies that the restriction of $d\omega$ in U must be zero.

Suppose ω is an exterior differential form defined on the open set U . Using Lemma 2.2.1, for any point $p \in U$, there is a coordinate neighborhood $U_1 \subset U$ of p and an exterior differential form $\tilde{\omega}$ defined on M such that $\tilde{\omega}|_{U_1} = \omega|_{U_1}$. Thus we can define $d\tilde{\omega}|_{U_1} = d\omega|_{U_1}$. Since d is a local operator, the above definition is independent of the choice of $\tilde{\omega}$. $d\omega$ is therefore well-defined.

Now we show the uniqueness of the exterior derivative d within a local coordinate neighborhood. We only need to show this for a monomial. Suppose in a coordinate neighborhood U , ω is expressed by

$$\omega = adu^1 \wedge \cdots \wedge du^r,$$

where a is a smooth function on U . By the properties of d , we see that

$$d\omega = da \wedge du^1 \wedge \cdots \wedge du^r,$$

where da is the differential of the function a . Thus $d\omega$ restricted to the coordinate neighborhood U has a completely determined form.

Suppose

$$\omega|_U = a_{i_1 \dots i_r} du^{i_1} \wedge \cdots \wedge du^{i_r}.$$

Then we can define

$$d(\omega|_U) = da_{i_1 \dots i_r} \wedge du^{i_1} \wedge \cdots \wedge du^{i_r}.$$

Obviously, $d(\omega|_U)$ is an exterior differential $(r+1)$ -form on U satisfying conditions 1 and 3. To show that 2 holds, we need only consider any two monomials

$$\begin{aligned} \alpha_1 &= adu^{i_1} \wedge \cdots \wedge du^{i_r} \\ \alpha_2 &= bdu^{j_1} \wedge \cdots \wedge du^{j_r}. \end{aligned}$$

By the definition, we have

$$\begin{aligned} d(\alpha_1 \wedge \alpha_2) &= d(ab) \wedge du^{i_1} \wedge \cdots \wedge du^{i_r} \wedge du^{j_1} \wedge \cdots \wedge du^{j_r} \\ &= (adb + bda) \wedge du^{i_1} \wedge \cdots \wedge du^{i_r} \wedge du^{j_1} \wedge \cdots \wedge du^{j_r} \\ &= (da \wedge du^{i_1} \wedge \cdots \wedge du^{i_r}) \wedge (bdu^{j_1} \wedge \cdots \wedge du^{j_r}) \\ &\quad + (-1)^r (adu^{i_1} \wedge \cdots \wedge du^{i_r}) \wedge (db \wedge du^{j_1} \wedge \cdots \wedge du^{j_r}) \\ &= d\alpha_1 \wedge \alpha_2 + (-1)^r \alpha_1 \wedge d\alpha_2. \end{aligned}$$

Property 2 is therefore established.

We now prove condition 4. Suppose f is a smooth function on M . Then on U it satisfies

$$df = \frac{\partial f}{\partial u^i} du^i.$$

Since f is C^∞ , its higher then first order partial derivatives are independent of the order taken, i.e.,

$$\frac{\partial^2 f}{\partial u^i \partial u^j} = \frac{\partial^2 f}{\partial u^j \partial u^i}.$$

Therefore

$$\begin{aligned} d(df) &= d\left(\frac{\partial f}{\partial u^i}\right) \wedge du^i \\ &= \frac{\partial^2 f}{\partial u^i \partial u^j} du^j \wedge du^i \\ &= \frac{1}{2} \left(\frac{\partial^2 f}{\partial u^i \partial u^j} - \frac{\partial^2 f}{\partial u^j \partial u^i} \right) du^j \wedge du^i \\ &= 0. \end{aligned}$$

If W is another coordinate neighborhood, we obtain by the local property of the exterior derivative operator and its uniqueness in a local coordinate neighborhood that

$$(d(\omega|_U))|_{U \cap W} = d(\omega|_{U \cap W}) = (d(\omega|_W))|_{U \cap W}.$$

Hence the exterior derivative operator d is uniformly defined above on $U \cap W$, i.e. d is an operator defined on M globally. This proves the existence of the operator d satisfying the conditions of the theorem. \square

Theorem 2.2.3 (Poincare's Lemma) For any exterior differential form ω , $d(d\omega) = 0$.

Proof. Since d is a linear operator, we need only prove the lemma when ω is a monomial. By the local properties of d , it suffices to assume that

$$\omega = adu^1 \wedge \cdots \wedge du^r.$$

Hence

$$d\omega = da \wedge du^1 \wedge \cdots \wedge du^r.$$

Differentiating one more time and applying conditions 2 and 4, we have

$$\begin{aligned}
d(d\omega) &= d(da) \wedge du^1 \wedge \cdots \wedge du^r \\
&\quad - da \wedge d(du^1) \wedge \cdots \wedge du^r + \cdots \\
&= 0.
\end{aligned}$$

□

Suppose $f : M \rightarrow N$ is a smooth map from a smooth manifold M to a smooth manifold N . Then f induces a tangent mapping $f_* : T_p(M) \rightarrow T_{f(p)}(N)$ at every point $p \in M$. For $\omega \in A^0(N)$, define

$$f^*\omega = \omega \circ f \in A^0(M).$$

For $\omega \in A^r(N)$, $r \geq 1$, let $f^*\omega$ be an element of $A^r(M)$ such that for any r smooth tangent vector fields X_1, X_2, \dots, X_r on M ,

$$\langle X_1 \wedge X_2 \wedge \cdots \wedge X_r, f^*\omega \rangle_p = \langle f_*X_1 \wedge f_*X_2 \wedge \cdots \wedge f_*X_r, \omega \rangle_{f(p)}, \quad p \in M,$$

where $\langle \cdot, \cdot \rangle$ can be computed by

$$\left\langle \frac{\partial}{\partial u^{i_1}} \wedge \cdots \wedge \frac{\partial}{\partial u^{i_r}}, du^{j_1} \wedge \cdots \wedge du^{j_r} \right\rangle_p = \delta_{i_1 \cdots i_r}^{j_1 \cdots j_r}.$$

Under this definition, the map f^* distributes over the wedge product, i.e.

$$f^*(\omega \wedge \eta) = f^*\omega \wedge f^*\eta, \quad \omega, \eta \in A(N).$$

Theorem 2.2.4 Suppose M, N are smooth manifold and $f : M \rightarrow N$ is a smooth map. Then the following diagram commutes:

$$\begin{array}{ccc}
A(N) & \xrightarrow{d} & A(N) \\
\downarrow f^* & & \downarrow f^* \\
A(M) & \xrightarrow{d} & A(M)
\end{array}$$

Proof. We can prove the equation $f^*(d\omega) = d(f^*\omega)$ for monomials ω by induction on its degree. □

2.3 Integrals of Differential Forms

Definition 2.3.1 An m -dimensional smooth manifold M is called **orientable** if there exists a continuous and nonvanishing exterior differential m -form ω on M . If M is given such an ω , then M is said to be **oriented**. If two such forms are given on M such that they differ by a function factor which is always positive, then we say that they assign the same **orientation** to M .

If ω, η are two exterior differential m -forms giving orientations to M , then there exists a nonvanishing continuous function f such that $\eta = f\omega$. When M is connected, f retains the same sign on the whole M . Therefore the orientation given by η is either identical to the one given by ω or the one given by $-\omega$. This implies that there exist exactly two orientations on a connected orientable manifold.

Suppose M is oriented by the exterior differential form ω , and $(U; u^i)$ is any local coordinate system on M . Then $du^1 \wedge \cdots \wedge du^m$ and $\omega|_U$ are the same up to a nonzero factor. If the factor is positive, then $(U; u^i)$ is said to be a coordinate system **consistent** with the orientation of M .

Definition 2.3.2 Suppose $f : M \rightarrow \mathbb{R}$ is a real function on M . The **support** of f is the closure of the set of points at which f is nonzero, i.e.

$$\text{supp } f = \overline{\{p \in M \mid f(p) \neq 0\}}.$$

If ϕ is an exterior differential form, the the support of ϕ is

$$\text{supp } \phi = \overline{\{p \in M \mid \phi(p) \neq 0\}}.$$

Definition 2.3.3 Suppose Σ_0 is an open covering of M . If every compact subset of M intersects only finitely many elements of Σ_0 , then Σ_0 is called a **locally finite** open covering of M .

Theorem 2.3.1 Suppose Σ is a topological basis of the manifold M . Then there is a subset Σ_0 of Σ such that Σ_0 is a locally finite open covering of M .

Proof. The second countability of M suggests that there exists a countable open covering $\{U_i\}$ of M such that the closure \overline{U}_i of every U_i is compact. Let

$$P_i = \bigcup_{r=1}^i \overline{U}_r, \quad i = 1, 2, \dots,$$

then P_i is compact, $P_i \subset P_{i+1}$ and

$$\bigcup_{i=1}^{\infty} P_i = M.$$

Now we inductively construct another sequence of compact sets Q_i satisfying $P_i \subset Q_i \subset \mathring{Q}_{i+1}$ for each i . Let $Q_0 = \emptyset$. Assuming that Q_0, \dots, Q_{i-1} have been constructed, we are going to construct Q_i . Since $Q_{i-1} \cup P_i$ is compact, there exist finitely many elements $U_{\alpha}, 1 \leq \alpha \leq s$ of $\{U_i\}$ such that

$$Q_{i-1} \cup P_i \subset \bigcup_{\alpha=1}^s U_{\alpha}.$$

Let

$$Q_i = \bigcup_{\alpha=1}^s \overline{U}_{\alpha},$$

then Q_i satisfies $P_{i-1} \subset Q_{i-1} \subset \mathring{Q}_i$ and $P_i \subset Q_i$. Obviously we also have

$$\bigcup_{i=1}^{\infty} Q_i = M.$$

Denote $Q_{-1} = \emptyset$ and let

$$L_i = Q_i - \mathring{Q}_{i-1}, \quad K_i = \mathring{Q}_{i+1} - Q_{i-2}$$

for each positive integer i . Then L_i is compact, K_i is open, and $L_i \subset K_i$. Since Σ is a topological basis of M , K_i can be expressed as a union of elements of Σ . These elements form an open covering of L_i , and hence there exist finitely many elements $V_{i,\alpha}, 1 \leq \alpha \leq r_i$ in Σ such that

$$L_i \subset \bigcup_{\alpha=1}^{r_i} V_{i,\alpha} \subset K_i$$

for each i . Because

$$\bigcup_{i=1}^{\infty} L_i = \bigcup_{i=1}^{\infty} Q_i = M,$$

we see that

$$\Sigma_0 = \{V_{i,\alpha}, 1 \leq \alpha \leq r_i, i \geq 1\}$$

is a subcovering of Σ .

To show the local finiteness, we consider an arbitrary compact set A . There exists a sufficiently large integer i such that $A \subset P_i \subset Q_i$. For $j \geq i + 2$,

$$K_j = \dot{Q}_{j+1} - Q_{j-2} \subset \dot{Q}_{j+1} - Q_i,$$

thus

$$A \cap V_{j,\alpha} \subset Q_i \cap K_j = \emptyset, \quad 1 \leq \alpha \leq r_j.$$

Therefore only finitely many elements of Σ_0 intersect A . \square

Theorem 2.3.2 (Partition of Unity Theorem) Suppose Σ is an open covering of a smooth manifold M . Then there exists a family of smooth functions $\{g_\alpha\}$ on M satisfying the following conditions:

1. $0 \leq g_\alpha \leq 1$, and $\text{supp } g_\alpha$ is compact for each α . Moreover, there exists an open set $W_i \subset \Sigma$ such that $\text{supp } g_\alpha \subset W_i$;
2. For each point $p \in M$, there is a neighborhood U of p that intersects $\text{supp } g_\alpha$ for only finitely many α ;
3. $\sum_\alpha g_\alpha = 1$.

The family $\{g_\alpha\}$ is called a **partition of unity** subordinate to the open covering Σ .

Proof. Because M is a manifold, there is a topological basis $\Sigma_0 = \{U_\alpha\}$ such that each U_α is a coordinate neighborhood, \overline{U}_α is compact, and there exists $W_i \in \Sigma$ such that $\overline{U}_\alpha \subset W_i$. By Theorem 2.3.1, we may assume that Σ_0 itself is a locally finite open covering of M with countably many elements.

For each U_α , we construct V_α by a contraction of U_α such that $\overline{V}_\alpha \subset U_\alpha$ and $\{V_\alpha\}$ is also an open covering for M . Let

$$W_\alpha = \bigcup_{i \neq \alpha} U_i.$$

Then $M - W_\alpha$ is a closed set contained in U_α and hence \overline{U}_α . The compactness of \overline{U}_α implies that $M - W_\alpha$ is also compact. Thus there are finitely many coordinate neighborhoods $W_{\alpha,s}$, $1 \leq s \leq r_\alpha$ such that $\overline{W}_{\alpha,s} \subset U_\alpha$ and

$$M - W_\alpha \subset \bigcup_{s=1}^{r_\alpha} W_{\alpha,s}.$$

Now let

$$V_\alpha = \bigcup_{s=1}^{r_\alpha} W_{\alpha,s},$$

then the V_α are as desired.

By Lemma 2.2.1, there exist smooth functions h_α with $0 \leq h_\alpha \leq 1$ on M such that

$$h_\alpha(p) = \begin{cases} 1, & p \in V_\alpha; \\ 0, & p \notin U_\alpha. \end{cases}$$

Then $\text{supp } h_\alpha \subset \overline{U}_\alpha$. For any point $p \in M$, there exists a neighborhood U such that \overline{U} is compact. The local finiteness of Σ_0 implies that \overline{U} intersects only finitely many elements of Σ_0 , and there are only finitely many nonzero terms in the summation $\sum_\alpha h_\alpha(p)$. Thus $h = \sum_\alpha h_\alpha$ defines a smooth function on M . Since $\{V_\alpha\}$ covers M , any point $p \in M$ must lie in some V_α , and thus $h(p) \geq h_\alpha(p) = 1$. Let $g_\alpha = h_\alpha/h$, then the family $\{g_\alpha\}$ satisfies all the conditions of the theorem. \square

Suppose M is an m -dimensional smooth manifold, and φ is an exterior differential m -form on M with a compact support. Choose any coordinate covering $\Sigma = \{W_i\}$ which is consistent with the orientation of M , and suppose that $\{g_\alpha\}$ is a partition of unity subordinate to Σ . Then $\varphi = \sum_\alpha (g_\alpha \cdot \varphi)$ and $\text{supp}(g_\alpha \cdot \varphi)$ is contained in some coordinate neighborhood $W_i \in \Sigma$. Suppose u^1, \dots, u^m is a coordinate system of W_i , with respect to which $g_\alpha \cdot \varphi$ has the expression as

$$f(u^1, \dots, u^m) du^1 \wedge \dots \wedge du^m.$$

The integral of $g_\alpha \cdot \varphi$ is then defined to be

$$\int_M g_\alpha \cdot \varphi = \int_{W_i} g_\alpha \cdot \varphi = \int_{W_i} f(u^1, \dots, u^m) du^1 \wedge \dots \wedge du^m,$$

where the right hand side is the usual Riemann integral.

We need to show that the right hand side is independent of the choice of the coordinate system $(W_i; u^1, \dots, u^m)$. Suppose $\text{supp}(g_\alpha \cdot \varphi) \subset W_i \cap W_j$, where W_i, W_j have the local coordinates u^k, v^k consistent with the orientation of M , respectively. The the Jacobian satisfies

$$J = \frac{\partial(v^1, \dots, v^m)}{\partial(u^1, \dots, u^m)} > 0.$$

Suppose $g_\alpha \cdot \varphi$ is expressed in W_i and W_j , respectively, by

$$\begin{aligned} g_\alpha \cdot \varphi &= f du^1 \wedge \dots \wedge du^m \\ &= \tilde{f} dv^1 \wedge \dots \wedge dv^m. \end{aligned}$$

Then we have

$$f = \tilde{f} \cdot J = \tilde{f} \cdot |J|,$$

and $\text{supp } f = \text{supp } \tilde{f} = \text{supp } (g_\alpha \cdot \varphi) \subset W_i \cap W_j$. Therefore

$$\begin{aligned} \int_{W_j} \tilde{f} dv^1 \cdots dv^m &= \int_{W_i \cap W_j} \tilde{f} dv^1 \cdots dv^m \\ &= \int_{W_i \cap W_j} \tilde{f} \cdot |J| du^1 \cdots du^m \\ &= \int_{W_i \cap W_j} f du^1 \cdots du^m \\ &= \int_{W_i} f du^1 \cdots du^m, \end{aligned}$$

i.e. the integral of $g_\alpha \cdot \varphi$ on M is well-defined.

Since $\text{supp } \varphi$ is compact, it only intersects finitely many $\text{supp } g_\alpha$. Let

$$\int_M \varphi = \sum_\alpha \int_M g_\alpha \cdot \varphi.$$

Now we show that the right hand side is independent of the choice of the partition of unity $\{g_\alpha\}$. Suppose $\{\tilde{g}_\beta\}$ is another partition of unity subordinate to Σ . Then

$$\begin{aligned} \sum_\beta \int_M \tilde{g}_\beta \cdot \varphi &= \sum_{\alpha, \beta} \int_M g_\alpha \cdot \tilde{g}_\beta \cdot \varphi \\ &= \sum_\alpha \int_M \sum_\beta \tilde{g}_\beta \cdot g_\alpha \cdot \varphi \\ &= \sum_\alpha \int_M g_\alpha \cdot \varphi. \end{aligned}$$

In conclusion, the value of

$$\int_M \varphi$$

is well-defined, and is called the **integral** of the exterior differential form φ on M .

If φ is an exterior differential r -form, $r < m$, with compact support, then we can define the integral of φ on any r -dimensional submanifold N of M . Suppose $h : N \rightarrow M$ is an r -dimensional imbedding of N into M . Then $h^* \varphi$ is an exterior differential r -form on the r -dimensional smooth manifold N

with compact support. The integral of φ on the submanifold $h(N)$ of M is then defined as

$$\int_{h(N)} \varphi = \int_N h^* \varphi.$$

2.4 Stokes' Formula

Definition 2.4.1 Suppose M is an m -dimensional smooth manifold. A **region D with boundary** is a subset of M with two kinds of points:

1. Interior points, each of which has a neighborhood in M contained in D .
2. Boundary points, for each of which there is a coordinate system $(U; u^i)$ such that $u^i(p) = 0$ and

$$U \cap D = \{q \in U \mid u^m(q) \geq 0\}.$$

A coordinate system u^i with the above property is called an **adapted coordinate system** for the boundary point p . The set B of all the boundary points of D is called the **boundary** of D .

Theorem 2.4.1 The boundary B of a region D is a regular imbedded closed submanifold. Furthermore, if M is orientable, then B is also orientable.

Proof. The boundary B of the region D is a closed subset of M . Suppose $(U; u^i)$ is an adapted coordinate neighborhood, then

$$U \cap B = \{q \in U \mid u^m(q) = 0\}.$$

Thus B is a regular imbedded closed submanifold of M .

Now suppose M is an orientable manifold. Choose an adapted coordinate neighborhood $(U; u^i)$ which is consistent with the orientation of M at an arbitrary point $p \in B$. Then (u^1, \dots, u^{m-1}) is a local coordinate system of B at the point p . Let

$$(-1)^m du^1 \wedge \dots \wedge du^{m-1}$$

specify the orientation of the boundary B in the coordinate neighborhood $U \cap B$ of the point p .

Suppose $(V; v^i)$ is another adapted coordinate neighborhood of the boundary point p consistent with the orientation of M . Then

$$\frac{\partial(v^1, \dots, v^m)}{\partial(u^1, \dots, u^m)} > 0.$$

Moreover, the sign of v^m is the same as that of u^m , and $v^m = 0$ holds whenever $u^m = 0$. This means that

$$\left. \frac{\partial v^m}{\partial u^i} \right|_q = 0, \quad 1 \leq i \leq m-1,$$

and that

$$\left. \frac{\partial v^m}{\partial u^m} \right|_q > 0$$

for any $q \in U \cap V \cap B$. Therefore

$$\frac{\partial(v^1, \dots, v^{m-1})}{\partial(u^1, \dots, u^{m-1})} > 0$$

holds within $U \cap V \cap B$. This shows that $(-1)^m du^1 \wedge \dots \wedge du^{m-1}$ and $(-1)^m dv^1 \wedge \dots \wedge dv^{m-1}$ give consistent orientations in $U \cap V \cap B$. Therefore, the orientation given by $(-1)^m du^1 \wedge \dots \wedge du^{m-1}$ in $U \cap B$ can be extended to the whole boundary B . Hence B is orientable. \square

The orientation of B given in the proof is called the **induced orientation** on the boundary B by an oriented manifold M . If D has the same orientation as M , we denote the boundary B with the induced orientation by ∂D .

Theorem 2.4.2 (Stokes' Formula) Suppose D is a region with boundary in an m -dimensional oriented manifold M , and ω is an exterior differential $(m-1)$ -form on M with compact support. Then

$$\int_D d\omega = \int_{\partial D} \omega.$$

If $\partial D = \emptyset$, then the integral on the right hand side is zero.

Proof. Suppose $\{U_i\}$ is a coordinate covering consistent with the orientation of M , and $\{g_\alpha\}$ is a subordinate partition of unity. Then

$$\omega = \sum_{\alpha} g_{\alpha} \cdot \omega.$$

The right hand side is a sum of finitely many terms since $\text{supp } \omega$ is compact. Therefore

$$\int_D d\omega = \sum_{\alpha} \int_D d(g_{\alpha} \cdot \omega),$$

and

$$\int_{\partial D} \omega = \sum_{\alpha} \int_{\partial D} g_{\alpha} \cdot \omega.$$

Thus we may assume that $\text{supp } \omega$ is contained in a coordinate neighborhood $(U; u^i)$ consistent with the orientation of M .

Suppose ω can be expressed as

$$\omega = \sum_{j=1}^m (-1)^{j-1} a_j du^1 \wedge \cdots \wedge \widehat{du^i} \wedge \cdots \wedge du^m,$$

where the a_j are smooth functions on U . Then

$$d\omega = \left(\sum_{j=1}^m \frac{\partial a_j}{\partial u^j} \right) du^1 \wedge \cdots \wedge du^m.$$

Case 1: If $U \cap \partial D = \emptyset$, then

$$\int_{\partial D} \omega = 0.$$

Then either $U \subset M - D$ or U is contained in the interior of D . We only need to consider the latter one. Consider a cube

$$C = \{u \in \mathbb{R}^m \mid |u^i| \leq K, 1 \leq i \leq m\}$$

such that the image of U under coordinate maps is contained in the interior of C . The functions a_j can be smoothly extended to C by letting them be zero outside U . Noting that

$$\begin{aligned} \int_{-K}^K \frac{\partial a_j}{\partial u^j} du^j &= a_j(u^1, \dots, u^{j-1}, K, u^{j+1}, \dots, u^m) \\ &\quad - a_j(u^1, \dots, u^{j-1}, -K, u^{j+1}, \dots, u^m) \\ &= 0, \end{aligned}$$

we have

$$\begin{aligned}
\int_U \frac{\partial a_j}{\partial u^j} du^1 \cdots du^m &= \int_C \frac{\partial a_j}{\partial u^j} du^1 \cdots du^m \\
&= \int_{|u^i| \leq K, i \neq j} \left(\int_{-K}^K \frac{\partial a_j}{\partial u^j} du^j \right) du^1 \cdots \widehat{du^j} \cdots du^m \\
&= 0
\end{aligned}$$

for each j , and hence

$$\int_D d\omega = \int_U \left(\sum_{j=1}^m \frac{\partial a_j}{\partial u^j} \right) du^1 \cdots du^m = 0.$$

Case 2: If $U \cap \partial D \neq \emptyset$, we may assume that U is an adapted coordinate neighborhood consistent with the orientation of M . Then

$$U \cap D = \{q \in U \mid u^m(q) \geq 0\}$$

and

$$U \cap \partial D = \{q \in U \mid u^m(q) = 0\}.$$

Consider the cube

$$C = \{u \in \mathbb{R}^m \mid u^m \geq 0, |u^i| \leq K, 1 \leq i \leq m\}$$

such that the image of $U \cap D$ under coordinate maps is contained in the union of the interior of C and the boundary $u^m = 0$. Noting that $du^m = 0$ on $U \cap \partial D$, we have

$$\begin{aligned}
\int_{\partial D} \omega &= \int_{U \cap \partial D} \omega \\
&= \sum_{j=1}^m (-1)^{j-1} \int_{U \cap \partial D} a_j du^1 \wedge \cdots \wedge \widehat{du^j} \wedge \cdots \wedge du^m \\
&= (-1)^{m-1} \int_{U \cap \partial D} a_m du^1 \wedge \cdots \wedge du^{m-1} \\
&= - \int_{|u^i| \geq K, 1 \leq i < m} a_m(u^1, \dots, u^{m-1}, 0) du^1 \cdots du^{m-1}.
\end{aligned}$$

On the other hand, since

$$\begin{aligned}
\int_{U \cap D} \frac{\partial a_j}{\partial u^j} du^1 \wedge \cdots \wedge du^m &= \int_{\substack{|u^i| \leq K, i < m, i \neq j \\ 0 \leq u^m \leq K}} \left(\int_{-K}^K \frac{\partial a_j}{\partial u^j} du^j \right) du^1 \cdots \widehat{du^j} \cdots du^m \\
&= 0
\end{aligned}$$

for $1 \leq j \leq m-1$, we have

$$\begin{aligned}
\int_D d\omega &= \int_{U \cap D} d\omega \\
&= \sum_{j=1}^m \int_{U \cap D} \frac{\partial a_j}{\partial u^j} du^1 \wedge \cdots \wedge du^m \\
&= \int_{U \cap D} \frac{\partial a_m}{\partial u^m} du^1 \wedge \cdots \wedge du^m \\
&= \int_{|u^i| \geq K, 1 \leq i < m} \left(\int_0^K \frac{\partial a_m}{\partial u^m} du^m \right) du^1 \cdots du^{m-1} \\
&= \int_{|u^i| \geq K, 1 \leq i < m} [a_m(u^1, \dots, u^{m-1}, K) - a_m(u^1, \dots, u^{m-1}, 0)] du^1 \cdots du^{m-1} \\
&= - \int_{|u^i| \geq K, 1 \leq i < m} a_m(u^1, \dots, u^{m-1}, 0) du^1 \cdots du^{m-1}.
\end{aligned}$$

In conclusion, we have

$$\int_D d\omega = \int_{\partial D} \omega,$$

and the theorem is proved. \square

We can view $A^r(M)$ as a cochain group with $d : A^r(M) \rightarrow A^{r+1}(M)$ being the coboundary operator. Denote

$$Z^r(M, \mathbb{R}) = \{\omega \in A^r(M) \mid d\omega = 0\}$$

and

$$B^r(M, \mathbb{R}) = \{\omega \in A^r(M) \mid \omega = d\eta \text{ for some } \eta \in A^{r-1}(M)\}.$$

The elements of $Z^r(M, \mathbb{R})$ are called **closed** differential forms and the elements of $B^r(M, \mathbb{R})$ are called **exact** differential forms. Poincare's Lemma thus implies that $B^r(M, \mathbb{R}) \subset Z^r(M, \mathbb{R})$.

Definition 2.4.2 The quotient space

$$H^r(M, \mathbb{R}) = Z^r(M, \mathbb{R}) / B^r(M, \mathbb{R})$$

is called the r -th **de Rham cohomology group** of M .

Any smooth map $f : M \rightarrow N$ induces a homomorphism

$$f^* : A^r(N) \rightarrow A^r(M)$$

which commutes with the coboundary operator d . Such a map f^* is called a **chain map**. It can be easily proved that f^* provides a homomorphism from $Z^r(N, \mathbb{R})$ to $Z^r(M, \mathbb{R})$ and that from $B^r(N, \mathbb{R})$ to $B^r(M, \mathbb{R})$. Hence f^* induces a homomorphism between the de Rham groups

$$f^* : H^r(N, \mathbb{R}) \rightarrow H^r(M, \mathbb{R}).$$

3 Connections

3.1 Connections on Vector Bundles

Definition 3.1.1 A **connection** on a vector bundle E is a map

$$D : \Gamma(E) \rightarrow \Gamma(T^*(M) \otimes E)$$

which satisfies the following conditions:

1. For any $s_1, s_2 \in \Gamma(E)$, $D(s_1 + s_2) = Ds_1 + Ds_2$.
2. For $s \in \Gamma(E)$ and any $\alpha \in C^\infty(M)$, $D(\alpha s) = d\alpha \otimes s + \alpha Ds$.

Suppose X is a smooth tangent vector field on M and $s \in \Gamma(E)$. Let

$$D_X s = \langle X, Ds \rangle,$$

then $D_X s$ is a section on E , called the **absolute differential quotient** or the **covariant derivative** of the section s along X .

Condition 2 for connections implies that $D(\lambda s) = \lambda Ds$ for any $\lambda \in \mathbb{R}$, hence D is a linear map from $\Gamma(E)$ to $\Gamma(T^*(M) \otimes E)$. The operator D also has the local property that if the restriction of a section s to an open set $U \subset M$ is zero, then $Ds|_U = 0$. By the definition of absolute differential quotient, it can be shown that for any smooth tangent vector fields X, Y on M , sections s, s_1, s_2 of E , and $\alpha \in C^\infty(M)$, we have

1. $D_{X+Y} s = D_X s + D_Y s$;
2. $D_{\alpha X} s = \alpha D_X s$;
3. $D_X(s_1 + s_2) = D_X s_1 + D_X s_2$;

$$4. D_X(\alpha s) = (X\alpha)s + \alpha D_X s.$$

Suppose U is a coordinate neighborhood of M with local coordinates $u^i, 1 \leq i \leq m$. Choose q smooth sections $s_\alpha, 1 \leq \alpha \leq q$ of E on U such that they are linearly independent everywhere. Such a set of sections is called a **local frame field** of E on U . At every point $p \in U$,

$$\{du^i \otimes s_\alpha, 1 \leq i \leq m, 1 \leq \alpha \leq q\}$$

forms a basis for the tensor space $T_p^* \otimes E_p$. Since Ds_α is a local section on U of the bundle $T^*(M) \otimes E$, we can write

$$Ds_\alpha = \Gamma_{\alpha i}^\beta du^i \otimes s_\beta,$$

where $\Gamma_{\alpha i}^\beta$ are smooth functions on U and the Einstein summation convention is adopted for the indices i and β . Denote

$$\omega_\alpha^\beta = \Gamma_{\alpha i}^\beta du^i,$$

then we have

$$Ds_\alpha = \omega_\alpha^\beta \otimes s_\beta.$$

Let $S = (s_1, \dots, s_q)^T$ and $\omega = (\omega_\alpha^\beta)$, then the above equation can be written as

$$DS = \omega \otimes S.$$

The matrix ω is called the **connection matrix**, which depends on the choice of the local frame field S .

If $S' = (s'_1, \dots, s'_q)^T$ is another local frame field on U , then we may assume that

$$S' = A \cdot S,$$

or equivalently,

$$s'_i = a_i^j s_j,$$

where $A = (a_i^j)$ is a nondegenerate matrix of smooth functions. Suppose the matrix of the connection D with respect to the local frame field S' is ω' . Then we have

$$\begin{aligned} DS' &= D(A \cdot S) \\ &= dA \otimes S + A \cdot DS \\ &= (dA + A \cdot \omega) \otimes S \\ &= (dA \cdot A^{-1} + A \cdot \omega \cdot A^{-1}) \otimes S'. \end{aligned}$$

It follows that

$$\omega' = dA \cdot A^{-1} + A \cdot \omega \cdot A^{-1},$$

or equivalently,

$$\omega' \cdot A = dA + A \cdot \omega.$$

Conversely, suppose a coordinate covering $\{U_i\}$ is chosen for M . On each U_i fix a local frame field S_i of E and assign a $q \times q$ matrix ω_i of differential 1-forms which satisfies the transformation formula above when the corresponding coordinate neighborhoods intersect. Then there exists a connection D on E whose matrix representation on each member U_i of the coordinate covering is exactly ω_i .

Theorem 3.1.1 A connection always exists on a vector bundle.

Proof. Choose a coordinate covering $\{U_\alpha\}_{\alpha \in \mathcal{A}}$ of M . We may assume that there is a local frame field S_α for any U_α . We need only construct a $q \times q$ matrix ω_α on each U_α such that the matrices constructed satisfy the transformation formula under a change of local frame field.

By Theorem 2.3.1 and the Partition of Unity Theorem, we may assume that $\{U_\alpha\}$ is locally finite and $\{g_\alpha\}$ is a corresponding subordinate partition of unity such that $\text{supp } g_\alpha \subset U_\alpha$. When $U_\alpha \cap U_\beta \neq \emptyset$, there naturally exists a nondegenerate matrix $A_{\alpha\beta}$ of smooth functions on $U_\alpha \cap U_\beta$ such that

$$S_\alpha = A_{\alpha\beta} \cdot S_\beta.$$

For every $\alpha \in \mathcal{A}$ choose an arbitrary $q \times q$ matrix φ_α of differential 1-forms on U_α . Let

$$\omega_\alpha = \sum_{U_\alpha \cap U_\beta \neq \emptyset} g_\beta \cdot (dA_{\alpha\beta} \cdot A_{\alpha\beta}^{-1} + A_{\alpha\beta} \cdot \varphi_\beta \cdot A_{\alpha\beta}^{-1})$$

be another matrix of differential 1-forms on U_α . When $U_\alpha \cap U_\beta \cap U_\gamma \neq \emptyset$, we have

$$A_{\alpha\beta} \cdot A_{\beta\gamma} = A_{\alpha\gamma}$$

in the intersection. Thus on $U_\alpha \cap U_\beta \neq \emptyset$, we have

$$\begin{aligned} A_{\alpha\beta} \cdot \omega_\beta \cdot A_{\alpha\beta}^{-1} &= \sum_{U_\alpha \cap U_\beta \cap U_\gamma \neq \emptyset} g_\gamma \cdot A_{\alpha\beta} \cdot (dA_{\beta\gamma} \cdot A_{\beta\gamma}^{-1} + A_{\beta\gamma} \cdot \varphi_\gamma \cdot A_{\beta\gamma}^{-1}) \cdot A_{\alpha\beta}^{-1} \\ &= \sum_{U_\alpha \cap U_\beta \cap U_\gamma \neq \emptyset} g_\gamma \cdot (dA_{\alpha\gamma} - dA_{\alpha\beta} \cdot A_{\beta\gamma} + A_{\alpha\gamma} \cdot \varphi_\gamma) \cdot A_{\beta\gamma}^{-1} \cdot A_{\alpha\beta}^{-1} \\ &= \omega_\alpha - dA_{\alpha\beta} \cdot A_{\alpha\beta}^{-1}. \end{aligned}$$

This is precisely the transformation formula. \square

Theorem 3.1.2 Suppose D is a connection on a vector bundle E and $p \in M$. Then there exists a local frame field S in a coordinate neighborhood of p such that the corresponding connection matrix ω is zero at p .

Proof. Choose a coordinate neighborhood $(U; u^i)$ of p such that $u^i(p) = 0, 1 \leq i \leq m$. Suppose S' is a local frame field on U with corresponding connection matrix $\omega' = (\omega'_\alpha^\beta)$, where $\omega'_\alpha^\beta = \Gamma_{\alpha i}^{\beta} du^i$, and the $\Gamma_{\alpha i}^{\beta}$ are smooth functions on U . Let

$$a_\alpha^\beta = \delta_\alpha^\beta - \Gamma_{\alpha i}^{\beta}(p) \cdot u^i.$$

Then $A = (a_\alpha^\beta)$ is the identity matrix at p . Hence there exists a neighborhood $V \subset U$ of p such that A is nondegenerate in V . Thus

$$S = A \cdot S'$$

is a local frame field on V . Noting that

$$da_\alpha^\beta = -\Gamma_{\alpha i}^{\beta}(p) \cdot du^i,$$

we have

$$dA(p) = -\omega'(p),$$

and hence

$$\omega(p) = dA(p) \cdot A^{-1}(p) + A(p) \cdot \omega'(p) \cdot A^{-1}(p) = dA(p) + \omega'(p) = 0.$$

□

Exteriorly differentiating the formula

$$\omega' \cdot A = dA + A \cdot \omega$$

once, we obtain

$$d\omega' \cdot A - \omega' \wedge dA = A \cdot d\omega + dA \wedge \omega.$$

Using the formula

$$dA = \omega' \cdot A - A \cdot \omega,$$

we then have

$$(d\omega' - \omega' \wedge \omega') \cdot A = A \cdot (d\omega - \omega \wedge \omega).$$

If we let

$$\Omega = d\omega - \omega \wedge \omega,$$

then the above equation can be written as

$$\Omega' = A \cdot \Omega \cdot A^{-1}.$$

Definition 3.1.2 The matrix $\Omega = d\omega - \omega \wedge \omega$ of differential 2-forms is called the **curvature matrix** of the connection D on U .

Choose any two tangent vectors $X_p, Y_p \in T_p(M), p \in U$. Suppose $s_p \in E_p$. Using the local frame field $S_U = (s_1, \dots, s_q)^T$ of the vector bundle E on U , s_p can be expressed as

$$s_p = \lambda^\alpha s_\alpha|_p.$$

Then let

$$R(X_p, Y_p)s_p = \lambda^\alpha \langle X_p \wedge Y_p, \Omega_\alpha^\beta|_p \rangle s_\beta|_p.$$

Noting that $\langle X_p \wedge Y_p, \Omega_\alpha^\beta|_p \rangle$ is actually a $(1, 1)$ -type tensor on the linear space E_p , $R(X_p, Y_p)$ is a linear transformation on E_p that is independent of the choice of local coordinates.

If X, Y are two smooth tangent vector fields on M , then $R(X, Y)$ is a linear operator on $\Gamma(E)$ given by

$$(R(X, Y)s)_p = R(X_p, Y_p)s_p$$

for each $s \in \Gamma(E), p \in M$. $R(X, Y)$ has the following properties:

1. $R(X, Y) = -R(Y, X)$;
2. $R(fX, Y) = f \cdot R(X, Y)$;
3. $R(X, Y)(fs) = f \cdot R(X, Y)s$,

where $X, Y \in \Gamma(T(M)), f \in C^\infty(M), s \in \Gamma(E)$. $R(X, Y)$ is called the **curvature operator** of the connection D .

Lemma 3.1.3 Suppose ω is a differential 1-form on a smooth manifold M and X, Y are smooth tangent vector fields on M . Then

$$\langle X \wedge Y, d\omega \rangle = X\langle Y, \omega \rangle - Y\langle X, \omega \rangle - \langle [X, Y], \omega \rangle.$$

Proof. Since both sides are linear with respect to ω , we may assume that ω is a monomial

$$\omega = gdf,$$

where f, g are smooth functions on M . Therefore

$$d\omega = dg \wedge df.$$

The left hand side then becomes

$$\langle X \wedge Y, d\omega \rangle = \langle X \wedge Y, dg \wedge df \rangle = \begin{vmatrix} \langle X, dg \rangle & \langle X, df \rangle \\ \langle Y, dg \rangle & \langle Y, df \rangle \end{vmatrix} = Xg \cdot Yf - Xf \cdot Yg.$$

Since

$$\langle X, \omega \rangle = \langle X, gdf \rangle = g \cdot Xf,$$

we have

$$Y\langle X, \omega \rangle = Yg \cdot Xf + g \cdot Y(Xf).$$

Similarly,

$$X\langle Y, \omega \rangle = Xg \cdot Yf + g \cdot X(Yf).$$

Therefore the right hand side is also

$$\begin{aligned} & X\langle Y, \omega \rangle - Y\langle X, \omega \rangle - \langle [X, Y], \omega \rangle \\ &= Xg \cdot Yf - Yg \cdot Xf + g \cdot (X(Yf) - Y(Xf)) - g \cdot \langle [X, Y], df \rangle \\ &= Xg \cdot Yf - Xf \cdot Yg. \end{aligned}$$

□

Theorem 3.1.4 Suppose X, Y are two arbitrary smooth tangent vector fields on the smooth manifold M . Then

$$R(X, Y) = D_X D_Y - D_Y D_X - D_{[X, Y]}.$$

Proof. We need only consider the operators of both sides on a local section. Suppose $s \in \Gamma(E)$ has the local expression

$$s = \lambda^\alpha s_\alpha.$$

Then

$$D_X s = (X\lambda^\alpha) s_\alpha + \lambda^\alpha D_X s_\alpha = (X\lambda^\alpha + \lambda^\beta \langle X, \omega_\beta^\alpha \rangle) s_\alpha.$$

Hence

$$\begin{aligned} D_Y D_X s &= \left[Y(X\lambda^\alpha + \lambda^\beta \langle X, \omega_\beta^\alpha \rangle) + (X\lambda^\beta + \lambda^\gamma \langle X, \omega_\gamma^\beta \rangle) \cdot \langle Y, \omega_\beta^\alpha \rangle \right] s_\alpha \\ &= \left[Y(X\lambda^\alpha) + Y\lambda^\beta \cdot \langle X, \omega_\beta^\alpha \rangle + \lambda^\beta \cdot Y \langle X, \omega_\beta^\alpha \rangle \right. \\ &\quad \left. + X\lambda^\beta \cdot \langle Y, \omega_\beta^\alpha \rangle + \lambda^\beta \langle X, \omega_\beta^\gamma \rangle \langle Y, \omega_\gamma^\alpha \rangle \right] s_\alpha. \end{aligned}$$

It follows that

$$\begin{aligned} (D_X D_Y - D_Y D_X) s &= \left[[X, Y]\lambda^\alpha + \lambda^\beta (X \langle Y, \omega_\beta^\alpha \rangle - Y \langle X, \omega_\beta^\alpha \rangle \right. \\ &\quad \left. + \langle Y, \omega_\beta^\gamma \rangle \langle X, \omega_\gamma^\alpha \rangle - \langle X, \omega_\beta^\gamma \rangle \langle Y, \omega_\gamma^\alpha \rangle) \right] s_\alpha. \end{aligned}$$

By Lemma 3.1.3, we have

$$X \langle Y, \omega_\beta^\alpha \rangle - Y \langle X, \omega_\beta^\alpha \rangle = \langle X \wedge Y, d\omega_\beta^\alpha \rangle + \langle [X, Y], \omega_\beta^\alpha \rangle.$$

Together with

$$\langle X \wedge Y, \omega_\beta^\gamma \wedge \omega_\gamma^\alpha \rangle = \langle Y, \omega_\beta^\gamma \rangle \langle X, \omega_\gamma^\alpha \rangle - \langle X, \omega_\beta^\gamma \rangle \langle Y, \omega_\gamma^\alpha \rangle,$$

we further obtain

$$\begin{aligned} (D_X D_Y - D_Y D_X)s &= \left[[X, Y] \lambda^\alpha + \lambda^\beta (\langle [X, Y], \omega_\beta^\alpha \rangle \right. \\ &\quad \left. + \langle X \wedge Y, d\omega_\beta^\alpha - \omega_\beta^g \wedge \omega_\gamma^\alpha \rangle) \right] s_\alpha \\ &= D_{[X, Y]} s + \lambda^\beta \langle X \wedge Y, \Omega_\beta^\alpha \rangle s_\alpha \\ &= (D_{[X, Y]} + R(X, Y)) s. \end{aligned}$$

That is

$$R(X, Y) = D_X D_Y - D_Y D_X - D_{[X, Y]}.$$

□

Theorem 3.1.5 The curvature matrix Ω satisfies the **Bianchi identity**

$$d\Omega = \omega \wedge \Omega - \Omega \wedge \omega.$$

Proof. Applying exterior differentiation to both sides of

$$\Omega = d\omega - \omega \wedge \omega,$$

we obtain

$$\begin{aligned} d\Omega &= -d\omega \wedge \omega + \omega \wedge d\omega \\ &= -(\Omega + \omega \wedge \omega) \wedge \omega + \omega \wedge (\Omega + \omega \wedge \omega) \\ &= \omega \wedge \Omega - \Omega \wedge \omega. \end{aligned}$$

□

Definition 3.1.3 Suppose C is a parametrized curve in M , and X is a tangent vector field along C . If a section s of the vector bundle E on C satisfies $D_X s = 0$, then we say s is **parallel** along the curve C .

Suppose the curve C is given in a local coordinate neighborhood U of M by

$$u^i = u^i(t), \quad 1 \leq i \leq m.$$

Then the tangent vector field of C is

$$X = \frac{du^i}{dt} \frac{\partial}{\partial u^i}.$$

Let S be a local frame field on U . Then

$$s = \lambda^\alpha s_\alpha$$

is a parallel section along C if and only if it satisfies the system of equations

$$D_X s = \left(\frac{d\lambda^\alpha}{dt} + \Gamma_{\beta i}^\alpha \frac{du^i}{dt} \lambda^\beta \right) s_\alpha = 0,$$

or equivalently,

$$\frac{d\lambda^\alpha}{dt} + \Gamma_{\beta i}^\alpha \frac{du^i}{dt} \lambda^\beta = 0, \quad 1 \leq \alpha \leq q.$$

By the Fundamental Theorem of Ordinary Differential Equations, there exists a unique solution for any given initial values. Thus if any vector $v \in E_p$ is given at a point p on C , then it determines uniquely a vector field parallel along C , which is called the **parallel displacement** of v along C .

A connection D of the vector bundle E induces a connection on the dual bundle E^* given by the equation

$$d\langle s, s^* \rangle = \langle Ds, s^* \rangle + \langle s, Ds^* \rangle$$

for any $s \in \Gamma(E), s^* \in \Gamma(E^*)$. Suppose connections D are separately given on the vector bundles E_1 and E_2 , then the equations

$$\begin{aligned} D(s_1 \oplus s_2) &= Ds_1 \oplus Ds_2 \\ D(s_1 \otimes s_2) &= Ds_1 \otimes Ds_2 \end{aligned}$$

determine connections on $E_1 \oplus E_2$ and $E_1 \otimes E_2$, respectively. These are called the **induced connections** on E^* , $E_1 \oplus E_2$ and $E_1 \otimes E_2$, respectively.

3.2 Affine Connections

A connection on the tangent bundle $T(M)$ is called an **affine connection** on the m -dimensional smooth manifold M . A manifold with a given affine connection is called an **affine connection space**.

Suppose M is an m -dimensional affine connection space with a given affine connection D . Choose any coordinate system $(U; u^i)$ of M . Then the natural basis $\{s_i = \partial/\partial u^i, 1 \leq i \leq m\}$ forms a local frame field of the tangent bundle $T(M)$ on U . Thus we may assume that

$$Ds_i = \omega_i^j \otimes s_j = \Gamma_{ik}^j du^k \otimes s_j,$$

where Γ_{ik}^j are smooth functions on U , called the **coefficients** of the connection D with respect to the local coordinates u^i . Suppose $(W; w^i)$ is another coordinate system of M . Let $s'_i = \partial/\partial w^i, 1 \leq i \leq m$. Then

$$S' = J_{WU} \cdot S$$

holds on $U \cap W \neq \emptyset$, where $J_{WU} = (\partial u^j / \partial w^i), S' = (s'_i)^T, S = (s_j)^T$. Then we have

$$\omega' = dJ_{WU} \cdot J_{WU}^{-1} + J_{WU} \cdot \omega \cdot J_{WU}^{-1},$$

or equivalently,

$$\omega'_i{}^j = d\left(\frac{\partial u^p}{\partial w^i}\right) \frac{\partial w^j}{\partial u^p} + \frac{\partial u^p}{\partial w^i} \frac{\partial w^j}{\partial u^q} \omega_p^q.$$

Using the relations

$$\omega'_i{}^j = \Gamma'_{ik}^j dw^k, \quad \omega_p^q = \Gamma_{pr}^q du^r,$$

we obtain

$$\Gamma'_{ik}^j = \Gamma_{pr}^q \frac{\partial w^j}{\partial u^q} \frac{\partial u^p}{\partial w^i} \frac{\partial u^r}{\partial w^k} + \frac{\partial^2 u^p}{\partial w^i \partial w^k} \frac{\partial w^j}{\partial u^p}.$$

This indicates that Γ'_{ik}^j is not a tensor field on M .

Suppose X is a smooth vector field on M expressed in local coordinates as

$$X = x^i \frac{\partial}{\partial u^i}.$$

Then

$$DX = (dx^i + x^j \omega_j^i) \otimes \frac{\partial}{\partial u^i} = x^i_{,j} du^j \otimes \frac{\partial}{\partial u^i},$$

where

$$x^i_{,j} = \frac{\partial x^i}{\partial u^j} + x^k \Gamma_{kj}^i.$$

DX is a tensor field of type $(1, 1)$ on M , called the **absolute differential** of X .

An affine connection on M induces connections on the cotangent bundle $T^*(M)$ and the tensor bundle T_s^r , respectively. Under coordinates u^i , the local coframe field of the cotangent bundle $s^{*i} = du^i, 1 \leq i \leq m$. By the definition of the induced connection on the dual bundle, we have

$$\langle s_j, Ds^{*i} \rangle = d\langle s_j, s^{*i} \rangle - \langle Ds_j, s^{*i} \rangle = d\delta_j^i - \omega_j^i = -\omega_j^i$$

for each i, j , hence

$$Ds^{*i} = -\omega_j^i \otimes s^{*j} = -\Gamma_{jk}^i du^k \otimes du^j.$$

If a cotangent vector field α on M is expressed in local coordinates as

$$\alpha = \alpha_i du^i,$$

then

$$D\alpha = (d\alpha_i - \alpha_j \omega_i^j) \otimes du^i = \alpha_{i,j} du^j \otimes du^i,$$

where

$$\alpha_{i,j} = \frac{\partial \alpha_i}{\partial u^j} - \alpha_k \Gamma_{ij}^k.$$

$D\alpha$ is then a $(0, 2)$ -type tensor field, called the **absolute differential** of the cotangent vector field α . In general, if t is an (r, s) -type tensor field, the the image of t under the induced connection D is an $(r, s + 1)$ -type tensor field Dt , called the absolute differential of t .

Definition 3.2.1 Suppose $C : u^i = u^i(t)$ is a parametrized curve on M , and $X(t)$ is a tangent vector field defined on C given by

$$X(t) = x^i(t) \left(\frac{\partial}{\partial u^i} \right)_{C(t)}.$$

We say that $X(t)$ is **parallel** along C if its absolute differential along C is zero, i.e. if

$$\frac{DX}{dt} = 0.$$

If the tangent vectors of a curve C are parallel along C , then we call C a **self-parallel curve**, or a **geodesic**.

The equation $DX/dt = 0$ is equivalent to

$$\frac{dx^i}{dt} + x^j \Gamma_{jk}^i \frac{du^k}{dt} = 0.$$

This is a system of first-order ordinary differential equations. Thus a given tangent vector X at any point on C gives rise to a parallel tangent vector field, called the **parallel displacement** of X along the curve C .

If C is a geodesic, then its tangent vector

$$X(t) = \frac{du^i(t)}{dt} \left(\frac{\partial}{\partial u^i} \right)_{C(t)}$$

is parallel along C . Therefore a geodesic curve C should satisfy

$$\frac{d^2 u^i}{dt^2} + \Gamma_{jk}^i \frac{du^j}{dt} \frac{du^k}{dt} = 0.$$

This is a system of second-order ordinary differential equations. Thus there exists a unique geodesic through a given point of M which is tangent to a given tangent vector at that point.

Now consider the curvature matrix Ω of an affine connection. Since

$$\omega_i^j = \Gamma_{ik}^j du^k,$$

we have

$$\begin{aligned} d\omega_i^j - \omega_i^h \wedge \omega_h^j &= \frac{\partial \Gamma_{ik}^j}{\partial u^l} du^l \wedge du^k - \Gamma_{il}^h \Gamma_{hk}^j du^l \wedge du^k \\ &= \frac{1}{2} \left(\frac{\partial \Gamma_{il}^j}{\partial u^k} - \frac{\partial \Gamma_{ik}^j}{\partial u^l} + \Gamma_{il}^h \Gamma_{hk}^j - \Gamma_{ik}^h \Gamma_{hl}^j \right) du^k \wedge du^l. \end{aligned}$$

Therefore

$$\Omega_i^j = \frac{1}{2} R_{ikl}^j du^k \wedge du^l,$$

where

$$R_{ikl}^j = \frac{\partial \Gamma_{il}^j}{\partial u^k} - \frac{\partial \Gamma_{ik}^j}{\partial u^l} + \Gamma_{il}^h \Gamma_{hk}^j - \Gamma_{ik}^h \Gamma_{hl}^j.$$

If $(W; w^i)$ is another coordinate system of M , then

$$\Omega' = J_{WU} \cdot \Omega \cdot J_{WU}^{-1},$$

where Ω' is the curvature matrix of the connection D under the coordinate system $(W; w^i)$. Therefore

$$\Omega'_i{}^j = \Omega_p^q \frac{\partial u^p}{\partial w^i} \frac{\partial w^j}{\partial u^q}.$$

Thus

$$R'_{ikl}{}^j = R_{prs}^q \frac{\partial u^p}{\partial w^i} \frac{\partial w^j}{\partial u^q} \frac{\partial u^r}{\partial w^k} \frac{\partial u^s}{\partial w^l},$$

where $R'_{ikl}{}^j$ is determined by

$$\Omega'_i{}^j = \frac{1}{2} R'_{ikl}{}^j dw^k \wedge dw^l.$$

If we let

$$R = R_{ikl}^j du^i \otimes \frac{\partial}{\partial u^j} \otimes du^k \otimes du^l,$$

then R is independent of the choice of local coordinates, and is called the **curvature tensor** of the affine connection.

Suppose X, Y, Z are tangent vector field with local expressions

$$X = X^i \frac{\partial}{\partial u^i}, \quad Y = Y^i \frac{\partial}{\partial u^i}, \quad Z = Z^i \frac{\partial}{\partial u^i}.$$

Then by the definition of the curvature operator, we have

$$R(X, Y)Z = Z^i \langle X \wedge Y, \Omega_i^j \rangle \frac{\partial}{\partial u^j} = R_{ikl}^j Z^i X^k Y^l \frac{\partial}{\partial u^j}.$$

Thus

$$R_{ikl}^j = \left\langle R \left(\frac{\partial}{\partial u^k}, \frac{\partial}{\partial u^l} \right) \frac{\partial}{\partial u^i}, du^j \right\rangle.$$

This is the relation between the curvature operator and the curvature tensor.

The connection coefficients Γ_{ik}^j does not satisfy the transformation rule for tensors. But if we define $T_{ik}^j = \Gamma_{ki}^k - \Gamma_{ik}^j$, then we have

$$T_{ik}^j = T_{pr}^q \frac{\partial w^j}{\partial u^q} \frac{\partial u^p}{\partial w^i} \frac{\partial u^r}{\partial w^k}$$

after the transformation formula for Γ_{ik}^j . Thus

$$T = T_{ik}^j \frac{\partial}{\partial u^j} \otimes du^i \otimes du^k$$

is a (1, 2)-type tensor, called the **torsion tensor** of the affine connection D . T can also be viewed as a map from $\Gamma(T(M)) \times \Gamma(T(M))$ to $\Gamma(T(M))$. Suppose X, Y are any two tangent vector field on M . Then $T(X, Y)$ is a tangent vector field on M with local expression

$$T(X, Y) = T_{ij}^k X^i Y^j \frac{\partial}{\partial u^k}.$$

It can be verified that

$$T(X, Y) = D_X Y - D_Y X - [X, Y].$$

Definition 3.2.2 If the torsion tensor of an affine connection D is zero, then the connection is said to be **torsion-free**.

If the coefficients of a connection D are Γ_{ik}^j , then set

$$\tilde{\Gamma}_{ik}^j = \frac{1}{2}(\Gamma_{ik}^j + \Gamma_{ki}^j).$$

The $\tilde{\Gamma}_{ik}^j$ can be the coefficients of some connection \tilde{D} since they satisfy the transformation formula for connection coefficients, and direct computation suggests that \tilde{D} is torsion-free. Therefore a torsion-free connection on a vector bundle always exists. Noting that

$$\Gamma_{ik}^j = -\frac{1}{2}T_{ik}^j + \tilde{\Gamma}_{ik}^j,$$

we have

$$D_X Z = \frac{1}{2}T(X, Z) + \tilde{D}_X Z.$$

This implies that any connection can be decomposed into a sum of a multiple of its torsion tensor and a torsion-free connection. Moreover, since the geodesic equation of the connection D is equivalent to

$$\frac{d^2 u^i}{dt^2} + \tilde{\Gamma}_{jk}^i \frac{du^j}{dt} \frac{du^k}{dt} = 0,$$

a connection D and the corresponding torsion-free connection \tilde{D} have the same geodesics.

Theorem 3.2.1 Suppose D is a torsion-free affine connection on M . Then for any point $p \in M$ there exists a local coordinate system u^i such that the corresponding connection coefficients Γ_{ik}^j vanish at p .

Proof. Suppose $(W; w^i)$ is a local coordinate system at p with connection coefficients Γ'_{ik}^j . Let

$$u^i = w^i + \frac{1}{2}\Gamma_{jk}^i(p)(w^j - w^j(p))(w^k - w^k(p)).$$

Then

$$\frac{\partial u^i}{\partial w^j} \Big|_p = \delta_j^i, \quad \frac{\partial^2 u^i}{\partial w^j \partial w^k} \Big|_p = \Gamma'_{jk}^i(p).$$

Thus the matrix $(\partial u^i / \partial w^j)$ is nondegenerate at p , and then the u^i provide a local coordinates in a neighborhood of p . Then the connection coefficients Γ'_{ik}^j in the new coordinate system u^i satisfy

$$\Gamma'_{ik}^j(p) = 0, \quad 1 \leq i, j, k \leq m.$$

□

Theorem 3.2.2 Suppose D is a torsion-free affine connection on M . Then we have the Bianchi identity

$$R_{ikl,h}^j + R_{ilh,k}^j + R_{ihk,l}^j = 0,$$

where $R_{ikl,h}^j$ is determined by the absolute differential of the curvature tensor R as

$$DR = R_{ikl,h}^j du^h \otimes du^i \otimes \frac{\partial}{\partial u^j} \otimes du^k \otimes du^l.$$

Proof. From Theorem 3.1.5 we have

$$d\Omega_i^j = \omega_i^k \wedge \Omega_k^j - \Omega_i^k \wedge \omega_k^j,$$

that is

$$\frac{\partial R_{ikl}^j}{\partial u^h} du^h \wedge du^k \wedge du^l = (\Gamma_{ih}^p R_{pkl}^j - \Gamma_{ph}^j R_{ikl}^p) du^h \wedge du^k \wedge du^l.$$

From

$$R = R_{ikl}^j du^i \otimes \frac{\partial}{\partial u^j} \otimes du^k \otimes du^l,$$

we obtain

$$\begin{aligned}
& DR \\
&= dR_{ikl}^j \otimes du^i \otimes \frac{\partial}{\partial u^j} \otimes du^k \otimes du^l + R_{ikl}^j D(du^i) \otimes \frac{\partial}{\partial u^j} \otimes du^k \otimes du^l \\
&\quad + R_{ikl}^j du^i \otimes D\left(\frac{\partial}{\partial u^j}\right) \otimes du^k \otimes du^l + R_{ikl}^j du^i \otimes \frac{\partial}{\partial u^j} \otimes D(du^k) \otimes du^l \\
&\quad + R_{ikl}^j du^i \otimes \frac{\partial}{\partial u^j} \otimes du^k \otimes D(du^l) \\
&= (dR_{ikl}^j - R_{pkl}^j \omega_i^p + R_{ikl}^p \omega_p^j - R_{ipl}^j \omega_k^p - R_{ikp}^j \omega_l^p) \otimes \frac{\partial}{\partial u^j} \otimes du^i \otimes du^k \otimes du^l,
\end{aligned}$$

and hence

$$R_{ikl,h}^j = \frac{\partial R_{ikl}^j}{\partial u^h} - \Gamma_{ih}^p R_{pkl}^j + \Gamma_{ph}^j R_{ikl}^p - \Gamma_{kh}^p R_{ipl}^j - \Gamma_{lh}^p R_{ikp}^j.$$

Therefore

$$\begin{aligned}
& R_{ikl,h}^j du^h \wedge du^k \wedge du^l \\
&= \left(\frac{\partial R_{ikl}^j}{\partial u^h} + \Gamma_{ph}^j R_{ikl}^p - \Gamma_{ih}^p R_{pkl}^j - \Gamma_{kh}^p R_{ipl}^j - \Gamma_{lh}^p R_{ikp}^j \right) du^h \wedge du^k \wedge du^l \\
&= -(\Gamma_{kh}^p R_{ipl}^j + \Gamma_{lh}^p R_{ikp}^j) du^h \wedge du^k \wedge du^l.
\end{aligned}$$

The torsion-free property of the connection implies that

$$\Gamma_{lh}^p R_{ikp}^j du^h \wedge du^k \wedge du^l = \Gamma_{hk}^p R_{ilp}^j du^h \wedge du^k \wedge du^l = -\Gamma_{kh}^p R_{ipl}^j du^h \wedge du^k \wedge du^l,$$

thus

$$R_{ikl,h}^j du^h \wedge du^k \wedge du^l = 0.$$

Hence

$$(R_{ikl,h}^j + R_{ilh,k}^j + R_{ihk,l}^j) du^h \wedge du^k \wedge du^l = 0.$$

Since the coefficients are skew-symmetric with respect to h, k, l , we have

$$R_{ikl,h}^j + R_{ilh,k}^j + R_{ihk,l}^j = 0.$$

□

3.3 Connections on Frame Bundles

Suppose M is an m -dimensional differentiable manifold. A **frame** refers to a combination of the form $(p; e_1, \dots, e_m)$, where p is a point in M and e_1, \dots, e_m are m linearly independent tangent vectors at p . The set of all frames on M is denoted by P . We now introduce a differentiable structure on P so that it becomes a smooth manifold, and the natural projection

$$\pi(p; e_1, \dots, e_m) = p$$

is a smooth map from P to M . (P, M, π) is then called the **frame bundle** of M .

Suppose $(U; u^i)$ is a coordinate neighborhood of M . Then there is a natural frame field $(\partial/\partial u^1, \dots, \partial/\partial u^m)$ on U . Hence any frame $(p; e_1, \dots, e_m)$ on U can be written as

$$e_i = X_i^k \left(\frac{\partial}{\partial u^k} \right)_p, \quad 1 \leq i \leq m,$$

where (X_i^k) is a nondegenerate $m \times m$ matrix, and therefore an element of $\text{GL}(m; \mathbb{R})$. Thus we can define a map $\varphi_U : U \times \text{GL}(m; \mathbb{R}) \rightarrow \pi^{-1}(U)$ by

$$\varphi_U(p, X_i^k) = \left(p; X_1^k \left(\frac{\partial}{\partial u^k} \right)_p, \dots, X_m^k \left(\frac{\partial}{\partial u^k} \right)_p \right)$$

for any $p \in U, (X_i^k) \in \text{GL}(m; \mathbb{R})$. We can see that φ_U is a one-to-one correspondence.

Choose a coordinate covering $\{U_1, U_2, \dots\}$ of M with corresponding maps $\{\varphi_1, \varphi_2, \dots\}$. The images of all the open subsets of $U_i \times \text{GL}(m; \mathbb{R})$ under the map φ_i form a topological basis for P . With respect to this topological structure of P , the map $\varphi_i : U_i \times \text{GL}(m; \mathbb{R}) \rightarrow \pi^{-1}(U)$ is a homeomorphism.

Through the map $\varphi_i, \pi^{-1}(U_i)$ becomes a coordinate neighborhood in P with local coordinate system (u^i, X_i^k) . Suppose U and W are coordinate neighborhoods in M such that $U \cap W \neq \emptyset$. Then M has the local change of coordinates

$$w^i = w^i(u^1, \dots, u^m), \quad 1 \leq i \leq m$$

on the intersection $U \cap W$. The corresponding natural bases have the following relationship

$$\frac{\partial}{\partial u^i} = \frac{\partial w^j}{\partial u^i} \frac{\partial}{\partial w^j}.$$

If $(p; e_1, \dots, e_m)$ is a frame on $U \cap W$, then its coordinates (u^i, X_i^k) and (w^i, Y_i^k) under two coordinate systems satisfy

$$w^i = w^i(u^1, \dots, u^m), \quad 1 \leq i \leq m,$$

and

$$Y_i^k = X_i^j \frac{\partial w^k}{\partial u^j}, \quad 1 \leq i, k \leq m.$$

We can then see that the coordinate neighborhoods $\pi^{-1}(U)$ and $\pi^{-1}(W)$ are C^∞ -compatible. Therefore P becomes an $(m^2 + m)$ -dimensional smooth manifold, and the natural projection $\pi : P \rightarrow M$ is a smooth surjection.

For any $p \in U$, let

$$\varphi_{U,p}(X) = \varphi_U(p, X), \quad X \in \mathrm{GL}(m; \mathbb{R}).$$

Then $\varphi_{U,p} : \mathrm{GL}(m; \mathbb{R}) \rightarrow \pi^{-1}(p)$ is a homeomorphism. If $U \cap W \neq \emptyset$, for $p \in U \cap W$, the map $\varphi_{W,p}^{-1} \circ \varphi_{U,p}$ is a homeomorphism from $\mathrm{GL}(m; \mathbb{R})$ to itself. In fact, $\varphi_{W,p}^{-1} \circ \varphi_{U,p}$ is precisely the right translation of the Jacobian matrix $J_{UW} = (\partial w^k / \partial u^j)$ on $\mathrm{GL}(m; \mathbb{R})$. Thus $\{J_{UW}\}$ forms a family of transition functions on the frame bundle. Therefore the frame bundle P is a fiber bundle that is not a vector bundle with $\mathrm{GL}(m; \mathbb{R})$ as its typical fiber.

Suppose $(U; u^i)$ and $(W; w^i)$ are two coordinate systems on M with the corresponding coordinate systems (u^i, X_i^k) and (w^i, Y_i^k) on P . Use (X_i^{*k}) and (Y_i^{*k}) to denote the inverse matrices of (X_i^k) and (Y_i^k) , respectively, that is

$$X_i^k X_k^{*j} = X_i^{*k} X_k^j = \delta_i^j, \quad Y_i^k Y_k^{*j} = Y_i^{*k} Y_k^j = \delta_i^j.$$

If $U \cap W \neq \emptyset$, then on $U \cap W$ we have

$$dw^i = \frac{\partial w^i}{\partial u^j} du^j.$$

On the other hand, since

$$Y_i^k = X_i^j \frac{\partial w^k}{\partial u^j},$$

we have

$$X_i^{*j} = \frac{\partial w^k}{\partial u^i} Y_k^{*j}.$$

Hence

$$X_i^{*j} du^i = Y_k^{*j} \frac{\partial w^k}{\partial u^i} du^i = Y_k^{*j} dw^k.$$

This implies that the differential 1-form

$$\theta^i = X_j^{*i} du^j$$

is independent of the choice of local coordinates of P . Therefore θ^i can be defined to be a differential 1-form on P .

Now suppose M is an m -dimensional affine connection space with connection D . Suppose the connection matrix of D under the local coordinate system $(U; u^i)$ is $\omega = (\omega_i^j)$. Then the absolute differential of the vector field $e_i = X_k^i(\partial/\partial u^k)$ is

$$De_i = (dX_i^k + X_i^j \omega_i^k) \otimes \frac{\partial}{\partial u^k}.$$

If we view X_i^k as independent variables and let

$$DX_i^k = dX_i^k + X_i^j \omega_j^k,$$

then DX_i^k is a differential 1-form on the coordinate neighborhood $\pi^{-1}(U)$ on P . Suppose $(W; w^i)$ is another local coordinate system of M . If $U \cap W \neq \emptyset$, then we have

$$Y_i^k = X_i^j \frac{\partial w^k}{\partial u^j}$$

on $U \cap W$. Thus

$$\begin{aligned} DY_i^k &= dY_i^k + Y_i^j \omega_j^k \\ &= dX_i^j \cdot \frac{\partial w^k}{\partial u^j} + X_i^j d\left(\frac{\partial w^k}{\partial u^j}\right) + \\ &\quad X_i^l \frac{\partial w^j}{\partial u^l} \left[d\left(\frac{\partial w^p}{\partial u^j}\right) \frac{\partial w^k}{\partial u^p} + \frac{\partial w^p}{\partial u^j} \frac{\partial w^k}{\partial u^q} \omega_p^q \right] \\ &= \left(dX_i^j + X_i^l \omega_l^j \right) \frac{\partial w^k}{\partial u^j} \\ &= DX_i^j \cdot \frac{\partial w^k}{\partial u^j}. \end{aligned}$$

Hence

$$Y_k^{*j} DY_i^k = Y_k^{*j} \frac{\partial w^k}{\partial u^l} DX_i^l = X_l^{*j} DX_i^l.$$

It follows that the differential 1-form

$$\theta_i^j = X_k^{*j} DX_i^k = X_k^{*j} (dX_i^k + X_i^l \omega_l^k)$$

is independent of the choice of the local coordinate system, and is therefore a differential 1-form on P .

Because (u^i, X_i^k) is a local coordinate system on P , (du^i, dX_i^k) are coordinates of the cotangent space at a point in P . Now θ^i along with θ_i^j are $(m^2 + m)$ differential 1-forms defined on P . They can be written as linear combinations of du^i, dX_i^k in the coordinate neighborhood $\pi^{-1}(U)$, and vice versa. Thus θ^i and θ_i^k are linearly independent everywhere, that is $\{\theta^i, \theta_i^k\}$ forms a coframe field on the whole of P , whose dual is then a global frame field on P .

Under the local coordinate system $(U; u^i)$, we have

$$\begin{aligned} du^i &= X_j^i \theta^j, \\ dX_i^j &= -X_i^k \omega_k^j + X_k^j \theta_i^k, \end{aligned}$$

after the definition of θ^i and θ_i^k . Exteriortly differentiating both equations, we obtain

$$\begin{aligned} 0 &= dX_j^i \wedge \theta^j + X_j^i d\theta^j \\ &= (-X_j^k \omega_k^i + X_k^i \theta_j^k) \wedge \theta^j + X_j^i d\theta^j \\ &= (-X_j^k \Gamma_{kl}^i X_h^l \theta^h + X_k^i \theta_j^k) \wedge \theta^j + X_j^i d\theta^j \\ &= X_j^i (d\theta^j - \theta^k \wedge \theta_k^j) - X_k^p X_h^l \Gamma_{pl}^i \theta^h \wedge \theta^k, \end{aligned}$$

and

$$\begin{aligned} 0 &= -dX_i^k \wedge \omega_k^j - X_i^k d\omega_k^j + dX_k^j \wedge \theta_i^k + X_k^j d\theta_i^k \\ &= -(-X_i^l \omega_l^k + X_l^k \theta_i^l) \wedge \omega_k^j - X_i^k d\omega_k^j \\ &\quad + (-X_k^l \omega_l^j + X_l^j \theta_k^l) \wedge \theta_i^k + X_k^j d\theta_i^k \\ &= -X_i^k \Omega_k^j + X_k^j (d\theta_i^k - \theta_i^l \wedge \theta_l^k). \end{aligned}$$

Hence

$$\begin{aligned} d\theta^j - \theta^k \wedge \theta_k^j &= X_r^{*j} X_k^p X_h^l \Gamma_{pl}^r \theta^h \wedge \theta^k \\ &= \frac{1}{2} X_r^{*j} X_k^p X_l^q T_{pq}^r \theta^k \wedge \theta^l, \end{aligned}$$

and

$$\begin{aligned} d\theta_i^j - \theta_i^k \wedge \theta_k^j &= X_h^{*j} X_i^k \Omega_k^h \\ &= \frac{1}{2} X_q^{*j} X_i^p X_k^r X_l^s R_{prs}^q \theta^k \wedge \theta^l. \end{aligned}$$

Here T_{pq}^r and R_{prs}^q are, respectively, the torsion tensor and the curvature tensor. Let

$$\begin{aligned} P_{kl}^j &= X_r^{*j} X_k^p X_l^q T_{pq}^r, \\ S_{ikl}^j &= X_q^{*j} X_i^p X_k^r X_l^s R_{prs}^q. \end{aligned}$$

Then the above equations become

$$\begin{aligned} d\theta^j - \theta^k \wedge \theta_k^j &= \frac{1}{2} P_{kl}^j \theta^k \wedge \theta^l, \\ d\theta_i^j - \theta_i^k \wedge \theta_k^j &= \frac{1}{2} S_{ikl}^j \theta^k \wedge \theta^l. \end{aligned}$$

Obviously P_{kl}^j and S_{ikl}^j are independent of the choice of local coordinates. Therefore the above equations are valid on the whole frame bundle P , and comprise the so-called **structure equations** of the connection.

The differential forms θ^i are determined by the differentiable structure of M . The importance of the structure equations is that collectively they give a sufficient condition for the m^2 differential forms θ_i^k to define an affine connection on M .

Lemma 3.3.1 (Cartan's Lemma) Suppose $\{v_1, \dots, v_r\}$ and $\{w_1, \dots, w_r\}$ are two sets of vectors in V such that

$$\sum_{i=1}^r v_i \wedge w_i = 0.$$

If v_1, \dots, v_r are linearly independent, then the w_i can be expressed as linear combinations of the v_j :

$$w_i = \sum_{j=1}^r a_{ij} v_j, \quad 1 \leq i \leq r,$$

with $a_{ij} = a_{ji}$.

Theorem 3.3.2 Suppose $\theta_i^j, 1 \leq i, j \leq m$ are m^2 differential 1-forms on the frame bundle P . If they and the θ^i satisfy the structure equation

$$\begin{aligned} d\theta^j - \theta^k \wedge \theta_k^j &= \frac{1}{2} P_{kl}^j \theta^k \wedge \theta^l, \\ d\theta_i^j - \theta_i^k \wedge \theta_k^j &= \frac{1}{2} S_{ikl}^j \theta^k \wedge \theta^l, \end{aligned}$$

where P_{kl}^j and S_{ikl}^j are certain functions defined in P , then there exists an affine connection D on M such that θ_i^j and D are related as

$$\theta_i^j = X_k^{*i} D X_i^k$$

locally.

Proof. Choose a coordinate neighborhood $(U; u^i)$ of M , then (u^i, X_i^k) is a local coordinate system in P . Then

$$\theta^i = X_k^{*i} du^k,$$

where (X_k^{*i}) is the inverse matrix of (X_i^k) . Therefore

$$d\theta^i = dX_k^{*i} \wedge du^k = (dX_k^{*i} \cdot X_j^k) \wedge \theta^j = -X_k^{*i} dX_j^k \wedge \theta^j.$$

Plugging this into the structure equation we have

$$\theta^j \wedge \left(\theta_j^i + \frac{1}{2} P_{jk}^i \theta^k - X_k^{*i} dX_j^k \right) = 0.$$

Since the θ^j are linearly independent, by Cartan's Lemma, $\theta_j^i - X_k^{*i} dX_j^k$ are linear combinations of the θ^l . Thus we may assume

$$X_j^k \theta_i^j - dX_i^k = \omega_j^k X_i^j,$$

where ω_j^k are linear combinations of θ^l , and hence of du^i . Let

$$\omega_j^k = \Gamma_{ji}^k du^i,$$

where Γ_{ji}^k are functions on P . If we can show that the Γ_{ji}^k are functions of u^i only and independent of X_i^j , then Γ_{ji}^k are the coefficients of some connection under the local coordinates u^i , and the theorem will be proved.

Exteriorly differentiating the equation

$$X_j^k \theta_i^j - dX_i^k = \omega_j^k X_i^j$$

we obtain

$$dX_j^k \wedge \theta_i^j + X_j^k d\theta_i^j = d\omega_j^k \cdot X_i^j - \omega_j^k \wedge dX_i^j.$$

This can be simplified to

$$X_i^j (d\omega_j^k - \omega_j^l \wedge \omega_l^k) = \frac{1}{2} X_j^k S_{ilh}^j \theta^l \wedge \theta^h$$

by the structure equation. Since the right hand side contains only the differentials du^i and so does $\omega_j^l \wedge \omega_l^k$, $d\omega_j^k$ should also contain only the differentials du^i . From

$$\omega_j^k = \Gamma_{ji}^k du^i$$

we have

$$d\omega_j^k = \frac{\partial \Gamma_{ji}^k}{\partial u^l} du^l \wedge du^i + \frac{\partial \Gamma_{ji}^k}{\partial X_l^h} dX_l^h \wedge du^i.$$

Hence

$$\frac{\partial \Gamma_{ji}^k}{\partial X_l^h} = 0.$$

Therefore Γ_{ji}^k are only functions of u^i .

Suppose $(W; w^i)$ is another coordinate neighborhood of M . Then (w^i, Y_i^k) is the local coordinate system of P in $\pi^{-1}(W)$. If $U \cap W \neq \emptyset$, then on $U \cap W$ we have

$$\theta_i^j = X_k^{*j} (dX_i^k + X_i^l \omega_l^k) = Y_k^{*j} (dY_i^k + Y_i^l \omega_l^k),$$

where $\omega_l^k = \Gamma_{lj}^k dw^j$ and the Γ_{lj}^k are functions of w^j only. Plugging

$$Y_i^k = X_i^j \frac{\partial w^k}{\partial u^j}$$

and

$$X_i^{*j} = \frac{\partial w^k}{\partial u^i} Y_k^{*j}$$

into this equation, we get

$$\omega_i'^j = d\left(\frac{\partial u^p}{\partial w^i}\right) \frac{\partial w^j}{\partial u^p} + \frac{\partial u^p}{\partial w^i} \frac{\partial w^j}{\partial u^q} \omega_p^q.$$

This implies that (ω_i^j) indeed defines an affine connection D on M , such that (ω_i^j) is the connection matrix of D under the local coordinate system $(U; u^i)$. \square

4 Riemannian Geometry

4.1 The Fundamental Theorem of Riemannian Geometry

Suppose M is an m -dimensional smooth manifold, and G is a symmetric covariant tensor field of rank 2 on M . If $(U; u^i)$ is a local coordinate system on M , then the tensor field G can be expressed as

$$G = g_{ij} du^i \otimes du^j$$

on U , where $g_{ij} = g_{ji}$ is a smooth function on U . G provides a bilinear function on $T_p(M)$ at every point $p \in M$. Suppose

$$X = X^i \frac{\partial}{\partial u^i}, \quad Y = Y^i \frac{\partial}{\partial u^i},$$

then

$$G(X, Y) = g_{ij} X^i Y^j.$$

We say that the tensor G is **nondegenerate** at the point p if, whenever $X \in T_p(M)$ and $G(X, Y) = 0$ for all $Y \in T_p(M)$, it must be true that $X = 0$. This implies that G is nondegenerate at p if and only if $\det(g_{ij}(p)) \neq 0$. If for all $X \in T_p(M)$ we have $G(X, X) \geq 0$ and the equality holds only if $X = 0$, then we say G is **positive definite** at p . A positive definite tensor G is necessarily nondegenerate.

Definition 4.1.1 If an m -dimensional smooth manifold M is given a smooth, everywhere nondegenerate symmetric covariant tensor field G of rank 2, then M is called a **generalized Riemannian manifold**, and G is called a **fundamental tensor** or **metric tensor** of M . If G is positive definite, then M is called a **Riemannian manifold**.

For a generalized Riemannian manifold M , G specifies an inner product on the tangent space $T_p(M)$ at every point $p \in M$. For any $X, Y \in T_p(M)$, let

$$X \cdot Y = G(X, Y) = g_{ij}(p) X^i Y^j.$$

When G is positive definite, it is meaningful to define the length of a tangent vector and the angle between two tangent vectors at the same point, i.e.,

$$|X| = \sqrt{g_{ij} X^i Y^j}, \quad \cos \angle(X, Y) = \frac{X \cdot Y}{|X||Y|}.$$

Thus a Riemannian manifold is a differentiable manifold which has a positive definite inner product on the tangent space at every point. The inner product is required to be smooth in the sense that if X, Y are smooth tangent vector fields, then $X \cdot Y$ is a smooth function on M .

The differential 2-form

$$ds^2 = g_{ij} du^i du^j$$

is independent of the choice of the local coordinate system u^i and is usually called the **metric form** or **Riemannian metric**. ds is precisely the length of an infinitesimal tangent vector, and is called the **element of arc length**.

Suppose $C : u^i = u^i(t), t_0 \leq t \leq t_1$ is a continuous and piecewise smooth parametrized curve on M . Then the arc length of C is defined to be

$$s = \int_{t_0}^{t_1} \sqrt{g_{ij} \frac{du^i}{dt} \frac{du^j}{dt}} dt.$$

Theorem 4.1.1 There exists a Riemannian metric on any m -dimensional smooth manifold M .

Proof. Choose a locally finite coordinate covering $\{(U_\alpha; u_\alpha^i)\}$ of M . Suppose $\{h_\alpha\}$ is the corresponding partition of unity such that $\text{supp } h_\alpha \subset U_\alpha$. Let

$$ds_\alpha^2 = \sum_{i=1}^m (du_\alpha^i)^2, \quad ds^2 = \sum_\alpha h_\alpha ds_\alpha^2.$$

Then the ds_α^2 and ds^2 are defined to be smooth differential 2-forms on M . If we choose a coordinate neighborhood $(U; u^i)$ such that \overline{U} is compact, then U intersects only finitely many $U_{\alpha_1}, \dots, U_{\alpha_r}$ by the local finiteness of $\{U_\alpha\}$. Therefore the restriction of ds^2 to U is

$$ds^2 = \sum_{\lambda=1}^r h_{\alpha_\lambda} ds_{\alpha_\lambda}^2 = g_{ij} du^i du^j,$$

where

$$g_{ij} = \sum_{\lambda=1}^r \sum_{k=1}^m h_{\alpha_\lambda} \frac{\partial u_{\alpha_\lambda}^k}{\partial u^i} \frac{\partial u_{\alpha_\lambda}^k}{\partial u^j}.$$

Since $0 \leq h_\alpha \leq 1$ and $\sum_\alpha h_\alpha = 1$, there exists an index β such that $h_\beta(p) > 0$. Hence $ds^2(p) \geq h_\beta ds_\beta^2(p)$. Thus ds^2 is positive definite everywhere on M . \square

Assume M is a generalized Riemannian manifold. When the local coordinate system is changed, the transformation formula for the components of a fundamental tensor G is given by

$$g'_{ij} = g_{kl} \frac{\partial u^k}{\partial u'^i} \frac{\partial u^l}{\partial u'^j}.$$

Since the matrix (g_{ij}) is nondegenerate, we may denote its inverse by (g^{ij}) , i.e.,

$$g^{ik} g_{kj} = g_{jk} g^{ki} = \delta_j^i.$$

The transformation for g^{ij} under a change of coordinates is given by

$$g'^{ij} = g^{kl} \frac{\partial u'^i}{\partial u^k} \frac{\partial u'^j}{\partial u^l}.$$

Hence (g'^{ij}) is a symmetric contravariant tensor of rank 2.

Using the fundamental tensor, we may identify a tangent space with a cotangent space, and hence a contravariant vector and a covariant vector can be viewed as different expressions of the same vector. In fact, if $X \in T_p(M)$, let

$$\alpha_X(Y) = G(X, Y), \quad Y \in T_p(M).$$

Then α_X is a linear functional on $T_p(M)$, i.e. $\alpha_X \in T_p^*(M)$. Conversely, since G is nondegenerate, any element of $T_p^*(M)$ can be expressed in the form α_X . Thus α establishes an isomorphism between $T_p(M)$ and $T_p^*(M)$. Componentwise, if

$$X = X^i \frac{\partial}{\partial u^i}, \quad \alpha_X = X_i du^i,$$

then we obtain from the relation of X and α_X that

$$X_i = g_{ij} X^j, \quad X^j = g^{ij} X_i.$$

In general, if $(t_{j_1 \dots j_s}^{i_1 \dots i_r})$ is a (r, s) -type tensor, then

$$t_{k j_1 \dots j_s}^{i_1 \dots i_{r-1}} = g_{kl} t_{j_1 \dots j_s}^{i_1 \dots i_{r-1} l}, \quad t_{j_2 \dots j_s}^{i_1 \dots i_r k} = g^{kl} t_{l j_2 \dots j_s}^{i_1 \dots i_r}$$

are $(r-1, s+1)$ -type and $(r+1, s-1)$ -type tensors, respectively. These operations are usually called the **lowering** and **raising** of tensorial indices, respectively.

Definition 4.1.2 Suppose (M, G) is an m -dimensional generalized Riemannian manifold, and D is an affine connection on M . If

$$DG = 0,$$

then D is called a **metric-compatible connection** on (M, G) .

Condition $DG = 0$ means that the fundamental tensor G is parallel with respect to metric-compatible connections. If the connection matrix of D under the local coordinates u^i is $\omega = (\omega_i^j)$, then

$$DG = (dg_{ij} - \omega_i^k g_{kj} - \omega_j^k g_{ik}) \otimes du^i \otimes du^j.$$

Thus $DG = 0$ is equivalent to

$$dg_{ij} = \omega_i^k g_{kj} + \omega_j^k g_{ik},$$

or in matrix notation,

$$dG = \omega \cdot G + G \cdot \omega^T,$$

where G represents the matrix

$$G = \begin{pmatrix} g_{11} & \cdots & g_{1m} \\ \vdots & & \vdots \\ g_{m1} & \cdots & g_{mm} \end{pmatrix}.$$

The geometric meaning of metric-compatible connections is that parallel translations preserve the metric. In particular, on a Riemannian manifold, the length of a tangent vector and the angle between two tangent vectors are invariant under parallel translations.

Theorem 4.1.2 (Fundamental Theorem of Riemannian Geometry) Suppose M is an m -dimensional generalized Riemannian manifold. Then there exists a unique torsion-free and metric-compatible connection on M , called the **Levi-Civita connection** of M , or the **Riemannian connection** of M .

Proof. Suppose D is a torsion-free and metric-compatible connection on M . Denote the connection matrix of D under the local coordinates u^i by $\omega = (\omega_i^j)$, where

$$\omega_i^j = \Gamma_{ik}^j du^k.$$

Then we have

$$\begin{aligned} dg_{ij} &= \omega_i^k g_{kj} + \omega_j^k g_{ik}, \\ \Gamma_{ik}^j &= \Gamma_{ki}^j. \end{aligned}$$

Denote

$$\Gamma_{ijk} = g_{lj} \Gamma_{ik}^j, \quad \omega_{ik} = g_{lk} \omega_i^l.$$

Then

$$\begin{aligned} \frac{\partial g_{ij}}{\partial u^k} &= \Gamma_{ijk} + \Gamma_{jik}, \\ \Gamma_{ijk} &= \Gamma_{kji}. \end{aligned}$$

Cycling the indices, we get

$$\begin{aligned}\frac{\partial g_{ik}}{\partial u^j} &= \Gamma_{ikj} + \Gamma_{kij}, \\ \frac{\partial g_{jk}}{\partial u^i} &= \Gamma_{jki} + \Gamma_{kji}.\end{aligned}$$

Therefore

$$\frac{\partial g_{ik}}{\partial u^j} + \frac{\partial g_{jk}}{\partial u^i} - \frac{\partial g_{ij}}{\partial u^k} = \Gamma_{ikj} + \Gamma_{kij} + \Gamma_{jki} + \Gamma_{kji} - \Gamma_{ijk} - \Gamma_{jik} = 2\Gamma_{ikj}.$$

We then obtain

$$\Gamma_{ikj} = \frac{1}{2} \left(\frac{\partial g_{ik}}{\partial u^j} + \frac{\partial g_{jk}}{\partial u^i} - \frac{\partial g_{ij}}{\partial u^k} \right),$$

and then

$$\Gamma_{ij}^k = \frac{1}{2} g^{kl} \left(\frac{\partial g_{il}}{\partial u^j} + \frac{\partial g_{jl}}{\partial u^i} - \frac{\partial g_{ij}}{\partial u^l} \right).$$

Thus the torsion-free and metric-compatible connection is determined uniquely by the metric tensor.

Conversely, the Γ_{ij}^k defined above indeed satisfy the transformation equation for connection coefficients under a change of local coordinates. Hence they define an affine connection D on M . Computations also verify that D is a torsion-free and metric-compatible connection on M . \square

The Γ_{ikj} and Γ_{ij}^k defined above are called **Christoffel symbols** of the first kind and second kind, respectively.

It is more convenient to use an arbitrary frame field instead of the natural frame field in a neighborhood of a Riemannian manifold. A local frame field is a local section of the frame bundle. Suppose (e_1, \dots, e_m) is a local frame field with coframe field $(\theta^1, \dots, \theta^m)$. Let

$$De_i = \theta_i^j e_j,$$

where $\theta = (\theta_i^j)$ is the connection matrix of D with respect to the frame field (e_1, \dots, e_m) . Here the θ^i, θ_i^j are exactly the forms obtained by pulling the differential 1-forms θ^i and θ_i^j on the frame bundle P back to local sections. Hence by the structure equations, the statement that D is torsion-free is equivalent to the statement that the θ_i^j satisfy the equations

$$d\theta^i - \theta^j \wedge \theta_j^i = 0.$$

If we still denote $g_{ij} = G(e_i, e_j)$, then the metric form is $ds^2 = g_{ij}\theta^i\theta^j$. Since $G = g_{ij}\theta^i \otimes \theta^j$, we have

$$DG = (dg_{ij} - g_{ik}\theta_j^k - g_{kj}\theta_i^k) \otimes \theta^i \otimes \theta^j.$$

Therefore the condition for D to be metric-compatible is still

$$dg_{ij} = g_{ik}\theta_j^k + g_{kj}\theta_i^k.$$

Now the Fundamental Theorem of Riemannian Geometry can be restated as follows.

Theorem 4.1.3 Suppose (M, G) is a generalized Riemannian manifold, and $\{\theta^i, 1 \leq i \leq m\}$ is a set of differential 1-forms on a neighborhood $U \subset M$ which is linearly independent everywhere. Then there exists a unique set of m^2 differential 1-forms θ_j^k on U such that

$$d\theta^i - \theta^j \wedge \theta_j^i = 0,$$

and

$$dg_{ij} = g_{ik}\theta_j^k + g_{kj}\theta_i^k,$$

where the g_{ij} are the components of G with respect to the local coframe field $\{\theta^i\}$, i.e. $G = g_{ij}\theta^i \otimes \theta^j$.

If M is a Riemannian manifold, and G is positive definite, then we can choose an orthogonal frame field $\{e_i, 1 \leq i \leq m\}$ in U with $g_{ij} = \delta_{ij}$, or equivalently,

$$ds^2 = \sum_{i=1}^m (\theta^i)^2.$$

The condition for the connection to be metric-compatible then becomes

$$\theta_j^i + \theta_i^j = 0,$$

which implies that the connection matrix $\theta = (\theta_i^j)$ is skew-symmetric.

By definition, the curvature matrix of the Levi-Civita connection ω is

$$\Omega = d\omega - \omega \wedge \omega.$$

Exterior differentiation of the equation

$$dG = \omega \cdot G + G \cdot \omega^T$$

yields

$$d\omega \cdot G - \omega \wedge dG + dG \wedge \omega^T + G \cdot (d\omega)^T = 0,$$

and then

$$(d\omega - \omega \wedge \omega) \cdot G + G \cdot (d\omega - \omega \wedge \omega)^T = 0,$$

i.e.

$$\Omega \cdot G + (\Omega \cdot G)^T = 0.$$

Let

$$\Omega_{ij} = \Omega_i^k g_{kj},$$

then $\Omega \cdot G = (\Omega_{ij})$, and the above equation becomes

$$\Omega_{ij} + \Omega_{ji} = 0,$$

that is, Ω_{ij} is skew-symmetric with respect to the lower indices. By a direct calculation we get

$$\Omega_{ij} = d\omega_{ij} - \omega_i^k \wedge \omega_{jk}.$$

Also, we have

$$\Omega_i^j = \frac{1}{2} R_{ikl}^j du^k \wedge du^l,$$

where

$$R_{ikl}^j = \frac{\partial \Gamma_{il}^j}{\partial u^k} - \frac{\partial \Gamma_{ik}^j}{\partial u^l} + \Gamma_{il}^h \Gamma_{hk}^j - \Gamma_{ik}^h \Gamma_{hl}^j.$$

If we let

$$R_{ijkl} = R_{ikl}^h g_{hj},$$

then

$$\Omega_{ij} = \frac{1}{2} R_{ijkl} du^k \wedge du^l,$$

and

$$R_{ijkl} = \frac{\partial \Gamma_{ijl}}{\partial u^k} - \frac{\partial \Gamma_{ijk}}{\partial u^l} + \Gamma_{ik}^h \Gamma_{jhl} - \Gamma_{il}^h \Gamma_{jhk}.$$

Here R_{ijkl} is a covariant tensor of rank 4. It is determined completely by a given generalized Riemannian metric on M , and is called the **curvature tensor** of the generalized Riemannian manifold M .

Theorem 4.1.4 The curvature tensor R_{ijkl} of a generalized Riemannian manifold satisfies the following properties:

1. $R_{ijkl} = -R_{jikl} = -R_{ijlk}$;
2. $R_{ijkl} + R_{iklj} + R_{iljk} = 0$;

$$3. R_{ijkl} = R_{klij}.$$

Proof. The skew-symmetry of R_{ikl}^j in the last two lower indices implies the same property of R_{ijkl} , i.e.,

$$R_{ijkl} = -R_{ijlk}.$$

Since we have

$$0 = \Omega_{ij} + \Omega_{ji} = \frac{1}{2}(R_{ijkl} + R_{jikl})du^k \wedge du^l,$$

it must be true that

$$R_{ijkl} + R_{jikl} = 0.$$

From the torsion-free property of the Levi-Civita connection we have

$$du^i \wedge \omega_{ij} = 0.$$

Exteriorly differentiating this and using the formula

$$\Omega_{ij} = d\omega_{ij} + \omega_i^k \wedge \omega_{jk},$$

we then have

$$du^i \wedge (\Omega_{ij} - \omega_i^k \wedge \omega_{jk}) = 0,$$

thus

$$du^i \wedge \Omega_{ij} = 0.$$

Therefore

$$R_{jikl}du^i \wedge du^k \wedge du^l = 0,$$

or equivalently,

$$(R_{jikl} + R_{jkli} + R_{jlik})du^i \wedge du^k \wedge du^l = 0.$$

Since the coefficients are skew-symmetric in the last three indices, we have

$$R_{jikl} + R_{jkli} + R_{jlik} = 0.$$

We can cycle the indices to obtain

$$R_{ijkl} + R_{iklj} + R_{iljk} = 0.$$

It follows that

$$\begin{aligned} 0 &= (R_{ijkl} + R_{iklj} + R_{iljk}) - (R_{jikl} + R_{jkli} + R_{jlik}) \\ &= 2R_{ijkl} + R_{iklj} + R_{iljk} + R_{jkil} + R_{ljk}. \end{aligned}$$

Similarly we also have

$$2R_{klij} + R_{kijl} + R_{kjli} + R_{likj} + R_{jlki} = 0.$$

Due to the skew-symmetry property 1, we finally have

$$R_{ijkl} = R_{klij}.$$

□

As a corollary, under the same conditions as in Theorem 4.1.4, we have

$$R_{jkl}^i + R_{klj}^i + R_{ljk}^i = 0.$$

Further, from $DG = 0$ we have

$$g_{ij,k} = 0,$$

and hence

$$R_{ijkl,h} = (g_{jp}R_{ikl}^p)_{,h} = g_{jp}R_{ikl,h}^p.$$

Thus it follows from

$$R_{ikl,h}^j + R_{ilh,k}^j + R_{ihk,l}^j = 0$$

that

$$R_{ijkl,h} + R_{ijlh,k} + R_{ijhk,l} = 0.$$

This is also called the **Bianchi identity**.

4.2 Geodesic Normal Coordinates

Definition 4.2.1 Suppose M is an m -dimensional Riemannian manifold. If a parametrized curve C is a geodesic curve in M with respect to the Levi-Civita connection, then C is called a **geodesic** of the Riemannian manifold M .

Suppose the coefficients of the Levi-Civita connection D under the local coordinates u^i are Γ_{jk}^i . Then the curve $C : u^i = u^i(t), 1 \leq i \leq m$ is a geodesic if it satisfies the system of second order differential equations

$$\frac{d^2u^i}{dt^2} + \Gamma_{jk}^i \frac{du^j}{dt} \frac{du^k}{dt} = 0, \quad 1 \leq i \leq m.$$

By definition, the tangent vector of a geodesic is parallel along the curve with respect to the Levi-Civita connection, which also preserves metric properties under parallel displacement. Therefore the length of the tangent vector

$$X = X^i \frac{\partial}{\partial u^i} = \frac{ds}{dt} \frac{\partial}{\partial u^i}$$

of a geodesic is constant, that is,

$$\frac{ds}{dt} = \text{const.}$$

Hence we see that the parameter for a geodesic curve in a Riemannian manifold must be a linear function of the arc length s , i.e.

$$t = \lambda s + \mu,$$

where $\lambda \neq 0$ and μ are constants.

The discussions below only assume that M is an affine connection space. Suppose the equation of a geodesic under the coordinate system $(U; u^i)$ is given by

$$\frac{d^2 u^i}{dt^2} + \Gamma_{jk}^i \frac{du^j}{dt} \frac{du^k}{dt} = 0, \quad 1 \leq i \leq m.$$

By the theory of ordinary differential equations, there exist for any point $x_0 \in U$ a neighborhood $W \subset U$ of x_0 and positive numbers r, δ such that for any initial value $x \in W$ and $\alpha \in \mathbb{R}^m$ satisfying $\|\alpha\| < r$, the system of equations has a unique solution in U expressed as

$$u^i = f^i(t, x^k, \alpha^k), \quad |t| < \delta,$$

that satisfies the initial conditions

$$\begin{aligned} u^i(0) &= f^i(0, x^k, \alpha^k) = x^i, \\ \frac{du^i}{dt}(0) &= \left. \frac{\partial f^i(t, x^k, \alpha^k)}{\partial t} \right|_{t=0} = \alpha^i. \end{aligned}$$

Furthermore, the functions f^i depend smoothly on the independent variable t and the initial values x^k, α^k .

If we choose a nonzero constant c , then the functions $f^i(ct, x^k, \alpha^k), x \in W, \|\alpha\| < r, |t| < \delta/|c|$ still satisfy the system of equations with initial values

$$\begin{aligned} f^i(ct, x^k, \alpha^k) \Big|_{t=0} &= x^i, \\ \frac{\partial f^i(ct, x^k, \alpha^k)}{\partial t} \Big|_{t=0} &= c\alpha^k. \end{aligned}$$

By the uniqueness property of the solution of the system of differential equations, whenever $\|\alpha\|, \|c\alpha\| < r$ and $|t|, |ct| < \delta$, we have

$$f^i(ct, x^k, \alpha^k) = f^i(t, x^k, c\alpha^k).$$

Since the left hand side of the above equation is always defined when $x \in W, \|\alpha\| < r, |t| < \delta/|c|$, we can use it to define the right hand side. Thus the function $f^i(t, x^k, \alpha^k)$ is always defined for $x \in W, |t| < \delta/|c|, \|\alpha\| < |c|r$. In particular, we can choose $|c| < \delta$, so that $f^i(t, x^k, \alpha^k)$ is defined for $x \in W, |t| \leq 1$ and $\|\alpha\| < |c|r$. Let

$$u^i = f^i(1, x^k, \alpha^k),$$

then

$$f^i(1, x^k, 0) = f^i(0, x^k, \alpha^k) = x^k.$$

Thus for a fixed $x \in W$, this provides a smooth map from a neighborhood of the origin in the tangent space $T_x(M)$ to a neighborhood of x in the manifold M . Because

$$\alpha^i = \frac{\partial f^i(t, x^k, \alpha^k)}{\partial t} \Big|_{t=0} = \frac{\partial f^i(1, x^k, t\alpha^k)}{\partial t} \Big|_{t=0} = \frac{\partial f^i(1, x^k, \alpha^k)}{\partial \alpha^j} \Big|_{\alpha=0} \cdot \alpha^j,$$

we have

$$\left(\frac{\partial u^i}{\partial \alpha^j} \right)_{\alpha=0} = \delta_j^i.$$

Hence the α^i can be chosen to be local coordinates of x in M , called the **geodesic normal coordinates** of x , or simply **normal coordinates**. A normal coordinate system of a point in M is determined up to a nondegenerate linear transformation.

Fix $\alpha^k = \alpha_0^k$. As t changes, $t\alpha_0^k$ describes a straight line in $T_x(M)$ starting from the origin, and traces a geodesic curve on the manifold starting from x and tangent to the tangent vector (α_0^k) . Therefore the equation for this geodesic curve under the normal coordinate system α^i is

$$\alpha^k = t\alpha_0^k,$$

where α_0^k is a constant.

Theorem 4.2.1 If M is a torsion-free affine connection space, then with respect to a normal coordinate system α^i at the point x , the connection coefficients Γ_{jk}^i are zero at x .

Proof. Since the geodesic curve $\alpha^i = t\alpha_0^i$ satisfies the system of differential equations for geodesics under the normal coordinate system α^i , we have for any α_0^k ,

$$\Gamma_{jk}^i \alpha_0^j \alpha_0^k = 0.$$

Since Γ_{jk}^i is symmetric in the lower indices for torsion-free connections, we have

$$\Gamma_{jk}^i(0) = 0, \quad 1 \leq i, j, k \leq m.$$

□

Theorem 4.2.2 For any point x_0 in an affine connection space M , there exists a neighborhood W of x_0 such that every point in W has a normal coordinate neighborhood that contains W .

Proof. Suppose $(U; u^i)$ is a normal coordinate system at a point x_0 . Let

$$U(x_0; \rho) = \left\{ x \in U \mid \sum_{i=1}^m (u^i(x))^2 < \rho^2 \right\}.$$

By the above discussion, there exists a neighborhood $W = U(x_0; r)$ of x_0 and a positive number δ such that for any $x \in W$ and $\alpha \in \mathbb{R}^m$, $\|\alpha\| < \delta$, there is a unique geodesic curve

$$u^i = f^i(t, x^k, \alpha^k), \quad |t| < 2,$$

with initial condition (x, α) . Let

$$B(0; \delta) = \{\alpha \in \mathbb{R}^m \mid \|\alpha\| < \delta\}.$$

Then we have a map $\varphi : W \times B(0; \delta) \rightarrow W \times U$ such that

$$\varphi(x, \alpha) = (x^k, f^k(1, x^i, \alpha^i)), \quad x \in W, \alpha \in B(0; \delta).$$

The map φ is smooth since the function f^k depend on x and α smoothly. Noting that

$$\left. \frac{\partial(x^k, f^k)}{\partial(x^i, \alpha^i)} \right|_{(x_0, 0)} = 1,$$

the Jacobian matrix of the map φ is nondegenerate near the point $(x_0, 0) \in W \times B(0; \delta)$. By the Inverse Function Theorem, there exists a neighborhood V of the point $(x_0, 0)$ and a positive number $a < \delta$ such that $\varphi : V \rightarrow U(x_0; a) \times U(x_0; a)$ is a diffeomorphism. For any $x \in U(x_0; a)$, let

$$V_x = \{\alpha \in B(0; a) \mid (x, \alpha) \in V\}.$$

Then the map

$$u^i = f^i(1, x^k, \alpha^k), \quad \alpha \in V_x$$

is a diffeomorphism from V_x to $U(x_0; a)$. Choose $W' = U(x_0; a)$, and then the above formula shows that W' has the desired property. \square

Corollary 4.2.3 For every point x_0 in an affine connection space M , there exists a neighborhood W of x_0 such that any two points in W can be connected by a geodesic curve.

Theorem 4.2.4 A torsion-free affine connection is completely determined locally by the curvature tensor.

Proof. Consider a normal coordinate system α^i at a fixed point O . Choose a natural frame at O , and parallel displace the frame along the geodesic curves starting from O . Thus we get a frame field $\{e_i, 1 \leq i \leq m\}$ in a neighborhood of O . Let θ^i be the dual differential 1-forms of e_j , and denote the restriction of the everywhere linearly independent m^2 differential 1-forms θ_i^j of the frame bundle to the above frame field by the same notation. Then θ^i, θ_i^j are differential 1-forms of t, α^k . When the α^k are constants, θ^i, θ_i^j are restricted to the geodesic curve $\alpha^i t$. Since the frame field is parallel along the geodesic curve $\alpha^i t$, we have

$$\begin{aligned} \theta^i &= \alpha^i dt + \bar{\theta}^i, \\ \theta_i^j &= \bar{\theta}_i^j, \end{aligned}$$

where $\bar{\theta}^i$ and $\bar{\theta}_i^j$ are the parts of θ^i and θ_i^j without dt . Plugging this into the structure equations and comparing the terms with dt , we obtain

$$\begin{aligned} \frac{\partial \bar{\theta}^i}{\partial t} &= d\alpha^i + \alpha^j \bar{\theta}_j^i, \\ \frac{\partial \bar{\theta}_i^j}{\partial t} &= \alpha^k S_{ikl}^j \bar{\theta}^l. \end{aligned}$$

Differentiating the first formula with respect to t again, we obtain

$$\frac{\partial^2 \bar{\theta}^i}{\partial t^2} = \alpha^j \frac{\partial \bar{\theta}_j^i}{\partial t} = \alpha^j \alpha^k S_{jkl}^i \bar{\theta}^l.$$

Since the frame field e_i is parallel along any direction at the point O , we have

$$\bar{\theta}_i^j \Big|_{t=0} = 0,$$

and then

$$\frac{\partial \bar{\theta}^i}{\partial t} \Big|_{t=0} = d\alpha^i.$$

Moreover, by definition we have

$$\theta^i \Big|_{t=0} = \alpha^i dt,$$

and thus

$$\bar{\theta}^i \Big|_{t=0} = 0.$$

For a given curvature tensor, the system of second-order ordinary differential equations

$$\frac{\partial^2 \bar{\theta}^i}{\partial t^2} = \alpha^j \alpha^k S_{jkl}^i \bar{\theta}^l$$

has a unique solution for $\bar{\theta}^i$ under the initial conditions, and $\bar{\theta}_i^j$ is then completely determined. Hence the curvature tensor completely determines the torsion-free affine connection locally. \square

Now assume M is an m -dimensional Riemannian manifold. Suppose $x_0 \in M$, and choose a fixed orthogonal frame F_0 in the tangent space $T_{x_0}(M)$. Then the normal coordinate system u^i at x_0 can be expressed as $u^i = \alpha^i s$, where (α^i) is a unit vector in $T_{x_0}(M)$ and s is the arc length of the geodesic curves starting from x_0 . Displace the frame F_0 parallel along the geodesic curves originating from x_0 to obtain an orthogonal frame field in a neighborhood of x_0 . We can write

$$\theta^i = \alpha^i ds + \bar{\theta}^i, \quad \theta_i^j = \bar{\theta}_i^j,$$

where $\bar{\theta}^i, \bar{\theta}_i^j$ do not contain the differential ds , and satisfy the equations

$$\begin{aligned} \frac{\partial \bar{\theta}^i}{\partial s} &= d\alpha^i + \alpha^j \bar{\theta}_j^i, \\ \frac{\partial \bar{\theta}_i^j}{\partial s} &= \alpha^k S_{ikl}^j \bar{\theta}^l, \\ \bar{\theta}_i^j + \bar{\theta}_j^i &= 0, \end{aligned}$$

with initial conditions

$$\bar{\theta}^i \Big|_{s=0} = 0, \quad \bar{\theta}_i^j \Big|_{s=0} = 0, \quad \frac{\partial \bar{\theta}^i}{\partial s} \Big|_{s=0} = d\alpha^i.$$

The arc length element near the point O can be expressed by

$$d\sigma^2 = \sum_{i=1}^m (\theta^i)^2 = ds^2 + 2ds \sum_{i=1}^m \alpha^i \bar{\theta}^i + \sum_{i=1}^m (\bar{\theta}^i)^2.$$

Since

$$\sum_{i=1}^m (\alpha^i)^2 = 1,$$

we have

$$\sum_{i=1}^m \alpha^i d\alpha^i = 0.$$

Together with

$$\bar{\theta}_i^j + \bar{\theta}_j^i = 0,$$

we see that

$$\frac{\partial}{\partial s} \left(\sum_{i=1}^m \alpha^i \bar{\theta}^i \right) = \sum_{i=1}^m \alpha^i \left(d\alpha^i + \sum_{j=1}^m \alpha^j \bar{\theta}_j^i \right) = 0.$$

Therefore

$$\sum_{i=1}^m \alpha^i \bar{\theta}^i = \sum_{i=1}^m \alpha^i \bar{\theta}^i \Big|_{s=0} = 0.$$

Hence the arc length element near O is

$$d\sigma^2 = ds^2 + \sum_{i=1}^m (\theta^i)^2.$$

Theorem 4.2.5 For every point O in a Riemannian manifold M , there exists a normal coordinate neighborhood W such that

1. Every point in W has a normal coordinate neighborhood that contains W .
2. The geodesic curve that connects O and $p \in W$ is the unique shortest curve in W connecting these two points.

Proof. Applying Theorem 4.2.2 to the Levi-Civita connection of M , and condition 1 follows. Now assume that u^i is the normal coordinate system

of the point O given by $u^i = \alpha^i s$. A normal coordinate neighborhood W as required in condition 1 is

$$W = \left\{ p \in M \left| \sum_{i=1}^m (u^i(p))^2 < \varepsilon^2 \right. \right\},$$

where ε is a sufficiently small positive number. Because W is a normal coordinate neighborhood, for any $p \in W$, there exists a unique geodesic curve γ in W that connects O and p . Suppose the length of γ is s_0 .

Suppose C is any piecewise smooth curve in W that connects O and p . We may assume that the parametrized equation for C is $u^i = u^i(s)$, where s is the arc length parameter of γ . Then the arc length of C is

$$\int_0^{s_0} ds = \int_0^{s_0} \sqrt{ds^2 + \sum_{i=1}^m (\theta^i)^2} \geq \int_0^{s_0} ds = s_0.$$

If C is the shortest path in W connecting O and p , then the equality holds. Hence we must have

$$\bar{\theta}^i = 0$$

along the curve C . If we write

$$\bar{\theta}^i = s d\alpha^i + A_j^i d\alpha^j,$$

then the A_j^i satisfy the initial conditions

$$A_j^i \Big|_{s=0} = 0, \quad \frac{\partial A_j^i}{\partial s} \Big|_{s=0} = 0.$$

This implies that $A_j^i = o(s)$ when $s \rightarrow 0$. Since

$$d\alpha^i + \frac{A_j^i}{s} d\alpha^j = 0$$

holds on C , we can let $s \rightarrow 0$ to obtain

$$d\alpha^i = 0, \quad \alpha^i = \text{const.}$$

It follows that C is a geodesic curve connecting O and p , i.e. $C = \gamma$. \square

Theorem 4.2.6 Suppose U is a normal coordinate neighborhood of the point O . Then there exists a positive number ε such that, for any $0 < \delta < \varepsilon$, the hypersphere

$$\Sigma_\delta = \left\{ p \in U \left| \sum_{i=1}^m (u^i(p))^2 = \delta^2 \right. \right\}$$

has the following properties:

1. Every point on Σ_δ can be connected to O by a unique shortest geodesic curve in U .
2. Any geodesic curve tangent to Σ_δ is strictly outside Σ_δ in a deleted neighborhood of the tangent point.

Proof. Choose W to be a normal coordinate neighborhood as required in Theorem 4.2.5. We may assume that W is a spherical neighborhood with radius ε . When $0 < \delta < \varepsilon$, since $\Sigma_\delta \subset W \subset U$ and U is a normal coordinate neighborhood, property 1 is just a corollary of Theorem 4.2.5.

The equation of Σ_δ can be written as

$$F(u^1, \dots, u^m) = \frac{1}{2}[(u^1)^2 + \dots + (u^m)^2 - \delta^2] = 0.$$

Suppose γ is a geodesic curve tangent to Σ_δ at p , and its equation is

$$u^i = u^i(\sigma),$$

where σ is the arc length of γ measured from the point p . Then

$$F(u^i(\sigma))|_{\sigma=0} = 0.$$

By the discussion before Theorem 4.2.5, the hypersphere Σ_δ is orthogonal to geodesic curves starting from the point O , thus the geodesic curve γ tangent to Σ_δ at the point p should be orthogonal to the geodesic curve connecting O and p . Therefore

$$\sum_{i=1}^m u^i(\sigma) \frac{du^i}{d\sigma} \Big|_{\sigma=0} = 0.$$

Direct calculation yields

$$\frac{d}{d\sigma} F(u^i(\sigma)) \Big|_{\sigma=0} = \sum_{i=1}^m u^i(\sigma) \frac{du^i}{d\sigma} \Big|_{\sigma=0} = 0,$$

and

$$\left. \frac{d^2}{d\sigma^2} F(u^i(\sigma)) \right|_{\sigma=0} = \sum_{i,j=1}^m \left[\delta_{ij} - \sum_{k=1}^m u^k(p) \Gamma_{ij}^k(p) \right] \cdot \left. \frac{du^i}{d\sigma} \right|_{s=0} \cdot \left. \frac{du^j}{d\sigma} \right|_{s=0}.$$

Since $(U; u^i)$ is a normal coordinate system, we have

$$\Gamma_{ij}^k(p) = 0.$$

Hence we can choose a sufficiently small $\varepsilon > 0$ such that whenever $0 < \delta < \varepsilon$, the second-order derivative of $F(u^i(\sigma))$ with respect to σ at $\sigma = 0$ is always positive. Thus $F(u^i(\sigma))$ is strictly positive near p , which means that the geodesic curve lies strictly outside Σ_δ near p , and has only one point in common with Σ_δ , namely p . \square

Definition 4.2.2 Suppose M is a connected Riemannian manifold, and p, q are two arbitrary points in M . Let

$$\rho(p, q) = \inf \widehat{pq},$$

where \widehat{pq} denotes the arc length of a curve connecting p and q with measurable arc length. Then $\rho(p, q)$ is called the **distance** between points p and q .

Theorem 4.2.7 The function $\rho : M \times M \rightarrow \mathbb{R}$ is a metric on M and makes M a metric space. The topology of M as a metric space and the original topology of M as a manifold are equivalent.

Theorem 4.2.8 There exists a η -ball neighborhood W at any point p in a Riemannian manifold M , where η is a sufficiently small positive number, such that any two points in W can be connected by a geodesic curve inside W . Such a neighborhood is called a **geodesic convex neighborhood**.

Proof. Suppose $p \in M$. There exists a ball-shaped normal coordinate neighborhood U of p with radius ε such that for any point q in U there is a normal coordinate neighborhood V_q that contains U . We may assume that ε also satisfies the requirements of Theorem 4.2.6. Choose a positive $\eta < \varepsilon/4$. We will show that the η -ball neighborhood W of p is a geodesic convex neighborhood of p .

Choose any $q_1, q_2 \in W$. Then

$$\rho(q_1, q_2) \leq \rho(p, q_1) + \rho(p, q_2) < 2\eta \leq \frac{\varepsilon}{2}.$$

Suppose $U(q_1; \varepsilon/2)$ is an $\varepsilon/2$ -ball neighborhood of q_1 , then $q_2 \in U(q_1; \varepsilon/2) \subset U \subset V_{q_1}$. By Theorem 4.2.5, there exists a unique geodesic curve γ in $U(q_1; \varepsilon/2)$ connecting q_1 and q_2 , whose length is precisely $\rho(q_1, q_2)$. We prove that the geodesic curve γ lies inside W . Since $\gamma \subset U(q_1; \varepsilon/2) \subset U$, the function $\rho(p, q), q \in \gamma$ is bounded. If γ does not lie inside W completely, then the function $\rho(p, q), q \in \gamma$ must attain its maximum at an interior point q_0 of γ . Let $\delta = \rho(p, q_0)$. Then $\delta < \varepsilon$, and the hypersphere Σ_δ is tangent to γ at q_0 . By Theorem 4.2.6, γ lies completely outside Σ_δ near q_0 , contradicting the fact that $\rho(p, q), q \in \gamma$ attains its maximum at q_0 . Therefore $\gamma \subset W$. \square

4.3 Sectional Curvature

Suppose M is an m -dimensional Riemannian manifold whose curvature tensor R is a covariant tensor of rank 4, and u^i is a local coordinate system in M . Then R can be expressed as

$$R = R_{ijkl} du^i \otimes du^j \otimes du^k \otimes du^l.$$

At every point $p \in M$, we have a multilinear function $R : T_p(M) \times T_p(M) \times T_p(M) \times T_p(M) \rightarrow \mathbb{R}$, defined by

$$R(X, Y, Z, W) = \langle X \otimes Y \otimes Z \otimes W, R \rangle.$$

If we let

$$X = X^i \frac{\partial}{\partial u^i}, \quad Y = Y^i \frac{\partial}{\partial u^i}, \quad Z = Z^i \frac{\partial}{\partial u^i}, \quad W = W^i \frac{\partial}{\partial u^i},$$

then

$$R(X, Y, Z, W) = R_{ijkl} X^i Y^j Z^k W^l.$$

In particular

$$R_{ijkl} = R \left(\frac{\partial}{\partial u^i}, \frac{\partial}{\partial u^j}, \frac{\partial}{\partial u^k}, \frac{\partial}{\partial u^l} \right).$$

We have already interpreted the curvature tensor of a connection D as a curvature operator: for any given $Z, W \in T_p(M)$, $R(Z, W)$ is a linear map from $T_p(M)$ to $T_p(M)$ defined by

$$R(Z, W)X = R_{ikl}^j Z^i W^l \frac{\partial}{\partial u^j}.$$

If D is the Levi-Civita connection of a Riemannian manifold M , then we have

$$R(X, Y, Z, W) = R(Z, W)X \cdot Y,$$

where \cdot on the right hand side is the inner product defined by

$$X \cdot Y = G(X, Y).$$

By the properties of R_{ijkl} , the 4-linear function $R(X, Y, Z, W)$ has the following properties:

1. $R(X, Y, Z, W) = -R(X, Y, W, Z) = -R(Y, X, Z, W);$
2. $R(X, Y, Z, W) + R(X, Z, W, Y) + R(X, W, Y, Z) = 0;$
3. $R(X, Y, Z, W) = R(Z, W, X, Y).$

Using the fundamental tensor G of M , we can also define a function

$$G(X, Y, Z, W) = G(X, Z)G(Y, W) - G(X, W)G(Y, Z).$$

Obviously the function defined above is linear with respect to every variable, and also has the same properties 1-3 as $R(X, Y, Z, W)$. If $X, Y \in T_p(M)$, then

$$G(X, Y, X, Y) = |X|^2|Y|^2 - (X \cdot Y)^2 = |X|^2|Y|^2 \sin^2 \angle(X, Y).$$

Therefore when X, Y are linearly independent, $G(X, Y, X, Y)$ is precisely the square of the area of the parallelogram determined by the tangent vectors X and Y . Hence $G(X, Y, X, Y) \neq 0$.

Suppose X', Y' are another two linearly independent tangent vectors at the point p , and that they span the same 2-dimensional tangent subspace E as that spanned by X and Y . Then we may assume that

$$X' = aX + bY, \quad Y' = cX + dY,$$

where $ad - bc \neq 0$. By properties 1-3 we have

$$\begin{aligned} R(X', Y', X', Y') &= (ad - bc)^2 R(X, Y, X, Y), \\ G(X', Y', X', Y') &= (ad - bc)^2 G(X, Y, X, Y). \end{aligned}$$

Thus

$$\frac{R(X', Y', X', Y')}{G(X', Y', X', Y')} = \frac{R(X, Y, X, Y)}{G(X, Y, X, Y)}.$$

This implies that the above expression is a function of the 2-dimensional subspace E of $T_p(M)$, and is independent of the choice of X and Y .

Definition 4.3.1 Suppose E is a 2-dimensional subspace of $T_p(M)$, and X, Y are any two linearly independent vectors in E . Then

$$K(E) = -\frac{R(X, Y, X, Y)}{G(X, Y, X, Y)}$$

is a function of E independent of the choice of X and Y in E . It is called the **Riemannian curvature**, or **sectional curvature**, of M at (p, E) .

The product of the two principal curvatures at a point on a surface in 3-dimensional Euclidean space is called the **total curvature**, or **Gauss curvature**, of the surface at that point. The **Theorema Egregium** shows that the total curvature K depends only on the first fundamental form of the surface as

$$K = -\frac{R_{1212}}{g},$$

where

$$g = g_{11}g_{22} - g_{12}^2$$

and

$$R_{1212} = \frac{\partial \Gamma_{122}}{\partial u^1} - \frac{\partial \Gamma_{121}}{\partial u^2} + \Gamma_{11}^h \Gamma_{2h2} - \Gamma_{12}^h \Gamma_{2h1}.$$

Suppose $m \geq 3$ and E is a 2-dimensional subspace of $T_p(M)$. Choose an orthogonal frame $\{e_i\}$ at p such that E is spanned by $\{e_1, e_2\}$. Suppose u^i is the geodesic normal coordinate system determined by this frame near p . Now consider the 2-dimensional submanifold S of all geodesic curves starting from p and tangent to E . Then the equation for S is

$$u^r = 0, \quad 3 \leq r \leq m,$$

and (u^1, u^2) are the normal coordinates of S at p . S is called the **geodesic submanifold** at p tangent to E . We will prove that the sectional curvature $K(E)$ of M at (p, E) is exactly the total curvature of the surface S , with Riemannian metric induced from M , at p .

Suppose the Riemannian metric of M near p is

$$ds^2 = g_{ij} du^i du^j.$$

Then its induced metric on S is

$$d\bar{s}^2 = \bar{g}_{\alpha\beta} du^\alpha du^\beta, \quad 1 \leq \alpha, \beta \leq 2,$$

where

$$\bar{g}_{\alpha\beta}(u^1, u^2) = g_{\alpha\beta}(u^1, u^2, 0, \dots, 0).$$

Therefore

$$\begin{aligned}\Gamma_{\alpha\beta\gamma}|_S &= \frac{1}{2} \left(\frac{\partial g_{\beta\gamma}}{\partial u^\alpha} + \frac{\partial g_{\alpha\beta}}{\partial u^\gamma} - \frac{\partial g_{\alpha\gamma}}{\partial u^\beta} \right) \Big|_S \\ &= \frac{1}{2} \left(\frac{\partial \bar{g}_{\beta\gamma}}{\partial u^\alpha} + \frac{\partial \bar{g}_{\alpha\beta}}{\partial u^\gamma} - \frac{\partial \bar{g}_{\alpha\gamma}}{\partial u^\beta} \right) = \bar{\Gamma}_{\alpha\beta\gamma}.\end{aligned}$$

Since (u^i) and (u^α) are normal coordinate systems of M and S , respectively, at p , we have

$$\bar{\Gamma}_{\alpha\beta\gamma}(p) = \Gamma_{ijk}(p) = 0.$$

Hence

$$\begin{aligned}R_{1212}(p) &= \left(\frac{\partial \Gamma_{122}}{\partial u^1} - \frac{\partial \Gamma_{121}}{\partial u^2} + \Gamma_{11}^h \Gamma_{2h2} - \Gamma_{12}^h \Gamma_{2h1} \right)_p \\ &= \left(\frac{\partial \bar{\Gamma}_{122}}{\partial u^1} - \frac{\partial \bar{\Gamma}_{121}}{\partial u^2} \right)_p = \bar{R}_{1212}(p).\end{aligned}$$

The sectional curvature of M at (p, E) is then

$$K(E) = -\frac{R(e_1, e_2, e_1, e_2)}{G(e_1, e_2, e_1, e_2)} = -\frac{R_{1212}}{g_{11}g_{22} - g_{12}^2} \Big|_p = -\frac{\bar{R}_{1212}}{\bar{g}_{11}\bar{g}_{22} - \bar{g}_{12}^2} \Big|_p = \bar{K}(p).$$

The right hand side is precisely the total curvature of the surface S at p .

Theorem 4.3.1 The curvature tensor of a Riemannian manifold M at a point p is uniquely determined by the sectional curvatures of all the 2-dimensional tangent subspaces at p .

Proof. Suppose there is a 4-linear function $\bar{R}(X, Y, Z, W)$ satisfying all the properties 1-3 of the curvature tensor $R(X, Y, Z, W)$, and that for any two linearly independent tangent vectors X, Y at p ,

$$\frac{\bar{R}(X, Y, X, Y)}{G(X, Y, X, Y)} = \frac{R(X, Y, X, Y)}{G(X, Y, X, Y)}.$$

We will show that for any $X, Y, Z, W \in T_p(M)$, we have

$$\bar{R}(X, Y, Z, W) = R(X, Y, Z, W).$$

If we let

$$S(X, Y, Z, W) = \bar{R}(X, Y, Z, W) - R(X, Y, Z, W),$$

Then S is also a 4-linear function satisfying the properties 1-3 and for any $X, Y \in T_p(M)$, it holds that

$$S(X, Y, X, Y) = 0.$$

It suffices to show that S is the zero function.

First we have

$$S(X + Z, Y, X + Z, Y) = 0.$$

Expanding this and using the properties of S we obtain

$$S(X, Y, Z, Y) = 0.$$

Thus

$$S(X, Y + W, Z, Y + W) = 0,$$

and by expanding we obtain

$$S(X, Y, Z, W) + S(X, W, Z, Y) = 0.$$

Therefore

$$S(X, Y, Z, W) = -S(X, W, Z, Y) = S(X, W, Y, Z).$$

A similar argument shows that

$$S(X, Y, Z, W) = S(X, W, Y, Z) = S(X, Z, W, Y).$$

On the other hand, it holds the identity

$$S(X, Y, Z, W) + S(X, Z, W, Y) + S(X, W, Y, Z) = 0.$$

Thus

$$S(X, Y, Z, W) = 0$$

and the proof is completed. \square

Definition 4.3.2 Suppose M is a Riemannian manifold. If the sectional curvature $K(E)$ at the point p is a constant, i.e. independent of E , then we say that M is **wandering** at p .

If M is wandering at p , then the sectional curvature of M at p can be denoted by $K(p)$. Hence for any $X, Y \in T_p(M)$ we have

$$R(X, Y, X, Y) = -K(p)G(X, Y, X, Y).$$

According to the proof of Theorem 4.3.1, for any $X, Y, Z, W \in T_p(M)$, we have

$$R(X, Y, Z, W) = -K(p)G(X, Y, Z, W).$$

Thus the condition for a Riemannian manifold to be wandering at p is

$$R_{ijkl}(p) = -K(p)(g_{ik}g_{jl} - g_{il}g_{jk})(p),$$

or

$$\Omega_{ij}(p) = -K(p) \cdot \theta_i \wedge \theta_j(p),$$

where $\theta_i = g_{ij}du^j$.

Definition 4.3.3 If M is a Riemannian manifold which is wandering at every point and the sectional curvature $K(p)$ is a constant function on M , then M is called a **constant curvature space**.

Theorem 4.3.2 (F. Schur's Theorem) Suppose M is a connected m -dimensional Riemannian manifold that is everywhere wandering. If $m \geq 3$, then M is a constant curvature space.

Proof. Since M is wandering everywhere, it holds that

$$\Omega_{ij} = -K\theta_i \wedge \theta_j,$$

where K is a smooth function on M , and $\theta_i = g_{ij}du^j$. Exterior differentiation yields

$$d\Omega_{ij} = -dK \wedge \theta_i \wedge \theta_j - Kd\theta_i \wedge \theta_j + K\theta_i \wedge d\theta_j.$$

However,

$$d\theta_i = dg_{ij} \wedge du^j = (g_{ik}\omega_j^k + g_{kj}\omega_i^k) \wedge du^j = (\omega_{ij} + \omega_{ji}) \wedge du^j,$$

where

$$\omega_{ij} = g_{jk}\omega_i^k = \Gamma_{ijk}du^k.$$

Since the Levi-Civita connection is torsion-free, we have

$$\omega_{ji} \wedge du^j = \Gamma_{jik}du^k \wedge du^j = 0,$$

and hence

$$d\theta_i = \omega_{ij} \wedge du^j = \omega_i^j \wedge \theta_j.$$

On the other hand, by the Bianchi identity,

$$\begin{aligned}
d\Omega_{ij} &= d(\Omega_{ij}^l g_{lj}) \\
&= d\Omega_i^l \cdot g_{lj} + \Omega_i^l \wedge dg_{lj} \\
&= (\omega_i^k \wedge \Omega_k^l - \Omega_i^k \wedge \omega_k^l) g_{lj} + \Omega_i^l \wedge (\omega_{lj} + \omega_{jl}) \\
&= \omega_i^k \wedge \Omega_{kj} + \Omega_i^k \wedge \omega_{jk} \\
&= \omega_i^k \wedge \Omega_{kj} + \Omega_{ik} \wedge \omega_j^k.
\end{aligned}$$

Thus

$$d\Omega_{ij} = -K\omega_i^k \wedge \theta_k \wedge \theta_j - K\theta_i \wedge \theta_k \wedge \omega_j^k = -Kd\theta_i \wedge \theta_j + K\theta_i \wedge d\theta_j.$$

We then obtain

$$dK \wedge \theta_i \wedge \theta_j = 0.$$

Since $\{\theta_i\}$ and $\{du^i\}$ are both local coframes, we may assume that $dK = a^k \theta_k$. Since $m \geq 3$, we have

$$a^k \theta_1 \wedge \cdots \wedge \theta_m = (-1)^{k-1} dK \wedge \theta_1 \wedge \cdots \wedge \widehat{\theta_k} \wedge \cdots \wedge \theta_m = 0, \quad 1 \leq k \leq m.$$

Hence $dK = 0$. Since M is a connected manifold, K is a constant function on M . \square

4.4 The Gauss-Bonnet Theorem

Suppose M is an oriented 2-dimensional Riemannian manifold. If we choose a smooth frame field $\{e_1, e_2\}$ in a coordinate neighborhood U whose orientation is consistent with that of M , with coframe $\{\theta^1, \theta^2\}$, then the Riemannian metric is

$$ds^2 = g_{ij} \theta^i \theta^j, \quad 1 \leq i, j \leq 2,$$

where $g_{ij} = G(e_i, e_j)$. By the Fundamental Theorem of Riemannian Geometry, there exists a unique set of differential 1-forms θ_i^j such that

$$d\theta^i - \theta^j \wedge \theta_j^i = 0, \quad dg_{ij} = g_{ik} \theta_j^k + g_{kj} \theta_i^k.$$

The θ_i^j define the Levi-Civita connection on M by

$$De_i = \theta_i^j e_j.$$

The curvature form for the connection is

$$\Omega_i^j = d\theta_i^j - \theta_i^k \wedge \theta_k^j.$$

Let $\Omega_{ij} = \Omega_i^k g_{kj}$, then Ω_{ij} is skew-symmetric. Since the indices i, j only take the values 1 and 2, the only nonzero element in the curvature form Ω_{ij} is Ω_{12} .

Let Ω denote the curvature matrix (Ω_i^j) and write

$$G = \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix}.$$

If (e'_1, e'_2) is another local frame field in a coordinate neighborhood $W \subset M$ with orientation consistent with that of M , then in $U \cap W$, when $U \cap W \neq \emptyset$,

$$\begin{pmatrix} e'_1 \\ e'_2 \end{pmatrix} = A \cdot \begin{pmatrix} e_1 \\ e_2 \end{pmatrix},$$

where

$$A = \begin{pmatrix} a_1^1 & a_1^2 \\ a_2^1 & a_2^2 \end{pmatrix}, \quad \det A > 0.$$

Let G' and Ω' denote the corresponding quantities with respect to the frame field (e'_1, e'_2) . Then

$$G' = A \cdot G \cdot A^T, \quad \Omega' = A \cdot G \cdot A^{-1}.$$

Therefore

$$\Omega' \cdot G' = A \cdot (\Omega \cdot G) \cdot A^T,$$

i.e.

$$\begin{pmatrix} 0 & \Omega'_{12} \\ -\Omega'_{12} & 0 \end{pmatrix} = \begin{pmatrix} a_1^1 & a_1^2 \\ a_2^1 & a_2^2 \end{pmatrix} \begin{pmatrix} 0 & \Omega_{12} \\ -\Omega_{12} & 0 \end{pmatrix} \begin{pmatrix} a_1^1 & a_2^1 \\ a_1^2 & a_2^2 \end{pmatrix}.$$

Thus

$$\Omega'_{12} = (a_1^1 a_2^2 - a_1^2 a_2^1) \Omega_{12} = (\det A) \cdot \Omega_{12}.$$

We also have

$$g' = \det G' = (\det A)^2 \cdot \det G = (\det A)^2 \cdot g.$$

Hence

$$\frac{\Omega'_{12}}{\sqrt{g'}} = \frac{\Omega_{12}}{\sqrt{g}}.$$

In the other words, Ω_{12}/\sqrt{g} is independent of the choice of the orientation-consistent local frame field, and is therefore an exterior differential 2-form defined on the whole manifold. If we choose a local coordinate system u^i with the same orientation as M , and $\{e_1, e_2\}$ is the natural basis, then

$$\Omega_{12} = \frac{1}{2} R_{12kl} du^k \wedge du^l = R_{1212} du^1 \wedge du^2.$$

Thus

$$\frac{\Omega_{12}}{\sqrt{g}} = \frac{R_{1212}}{g} \cdot \sqrt{g} du^1 \wedge du^2 = -K d\sigma,$$

where K is the Gauss curvature of M and $d\sigma = \sqrt{g} du^1 \wedge du^2$ is the oriented area element of M .

If $\{e_1, e_2\}$ is an orthogonal local frame field with an orientation consistent with that of M , then

$$g = g_{11}g_{22} - g_{12}^2 = 1.$$

Thus

$$K d\sigma = -\Omega_{12}.$$

On the other hand,

$$\Omega_{12} = d\theta_{12} + \theta_1^i \wedge \theta_{2i}.$$

The skew-symmetry of θ_i^j implies that

$$\Omega_{12} = d\theta_{12},$$

where $\theta_{12} = D e_1 \cdot e_2$. It then follows that

$$K d\sigma = -d\theta_{12}.$$

As long as there exists a smooth orthogonal frame field $\{e_1, e_2\}$ with an orientation consistent with M in an open subset $U \subset M$, then there exists a connection form θ_{12} on U , and hence the above formula holds.

On an oriented 2-dimensional Riemannian manifold, a smooth orthogonal frame field with an orientation consistent with that of M corresponds to a tangent vector field that is never zero. In fact, the tangent vector e_2 in the frame $\{e_1, e_2\}$ is obtained by rotating e_1 by $\pi/2$ according to the orientation of M . Therefore an orthogonal frame field $\{e_1, e_2\}$ with an orientation consistent with that of M is equivalent to the unit tangent vector field e_1 .

A null point of a tangent vector field is called a **singular point**. Assume that there is a smooth vector field X on U that has exactly one singular point p , i.e. $X_q \neq 0$ whenever $q \in U - \{p\}$. Then there is a smooth unit tangent vector field

$$a_1 = \frac{X}{|X|}$$

which determines an orthogonal frame field $\{e_1, e_2\}$ with an orientation consistent with that of M in $U - \{p\}$. Therefore, if $\{e_1, e_2\}$ is a given orthogonal

frame field on U that is also orientation-consistent with M , then we may assume that

$$\begin{aligned} a_1 &= e_1 \cos \alpha + e_2 \sin \alpha, \\ a_2 &= -e_1 \sin \alpha + e_2 \cos \alpha, \end{aligned}$$

where $\alpha = \angle(e_1, a_1)$ is the oriented angle from e_1 to a_1 . Although α is a multi-valued function, the difference between two values of α is an integer multiple of 2π at every point. Thus there always exists a continuous branch of α in a neighborhood of any point. The single-valued function obtained from this branch is smooth in the neighborhood. Let

$$\omega_{12} = Da_1 \cdot a_2,$$

then direct calculation yields that

$$\omega_{12} = d\alpha + \theta_{12}.$$

Suppose D is a simply connected domain containing the point p whose boundary is a smooth simple closed curve $C = \partial D$. Then C has a induced orientation of M . Suppose the arc length parameter of C is $s, 0 \leq s \leq L$, and the direction along the curve as s increases is the same as the induced direction of C . So $C(0) = C(L)$. Since C is compact, it can be covered by finitely many neighborhoods, and there exists a continuous branch of α in each neighborhood. Therefore, there exists a continuous function

$$\alpha = \alpha(s), \quad 0 \leq s \leq L$$

on C . By the Fundamental Theorem of Calculus we have

$$\alpha(L) - \alpha(0) = \int_0^L d\alpha.$$

Since $\alpha(L)$ and $\alpha(0)$ are the angles between the tangent vectors a_1 and e_1 at the same point $C(0) = C(L)$, the left hand side is an integer multiple of 2π , and is independent of the choice of the continuous branch of $\alpha(s)$. It is also independent of the choice of the frame field $\{e_1, e_2\}$.

The value of

$$\alpha(L) - \alpha(0) = \int_0^L d\alpha$$

given above is also independent of the choice of the simple closed curve C surrounding the point p . Suppose there is another simply connected domain

$D_1 \subset \mathring{D}$ containing p . Let $C_1 = \partial D_1$. Then $D - D_1$ is a domain with boundary in M , and its boundary with induced orientation is $C - C_1$. By the Stokes' Formula, we have

$$\begin{aligned}\int_{C-C_1} d\alpha &= \int_{C-C_1} \omega_{12} - \int_{C-C_1} \theta_{12} \\ &= \int_{C-C_1} \omega_{12} - \int_{D-D_1} d\theta_{12} \\ &= \int_{C-C_1} \omega_{12} + \int_{D-D_1} K d\sigma.\end{aligned}$$

The right hand side is independent of the choice of the frame field $\{e_1, e_2\}$ on $D - D_1$. Hence we may assume that $e_i = a_i, i = 1, 2$. Then the right hand side vanishes and hence

$$\int_{C-C_1} d\alpha = 0,$$

or equivalently,

$$\int_C d\alpha = \int_{C_1} d\alpha.$$

Definition 4.4.1 Suppose X is a smooth tangent vector field with an isolated singular point p , and U is a coordinate neighborhood of p such that p is the only singular point of X in U . Then the integer

$$I_p = \frac{1}{2\pi} [\alpha(L) - \alpha(0)] = \frac{1}{2\pi} \int_C d\alpha,$$

obtained by the above construction is independent of the choice of the simple closed curve C surrounding p , and the choice of the frame field $\{e_1, e_2\}$ on U . It is called the **index** of the tangent vector field X at the point p .

Integrating

$$\omega_{12} = d\alpha + \theta_{12}$$

over C we obtain

$$\frac{1}{2\pi} \int_C \omega_{12} = \frac{1}{2\pi} \int_C d\alpha - \frac{1}{2\pi} \int_D K d\sigma.$$

Since the Gauss curvature is continuous at p , when D is shrunk to a point, the integral

$$\frac{1}{2\pi} \int_D K d\sigma \rightarrow 0.$$

However, the integral

$$\frac{1}{2\pi} \int_C d\alpha$$

is exactly the constant I_p . Hence we have

$$I_p = \frac{1}{2\pi} \lim_{C \rightarrow p} \int_C \omega_{12}.$$

Theorem 4.4.1 (Gauss-Bonnet Theorem) Suppose M is a compact oriented 2-dimensional Riemannian manifold. Then

$$\frac{1}{2\pi} \int_M K d\sigma = \chi(M),$$

where $\chi(M)$ is the **Euler characteristic** of M .

Proof. Choose a smooth tangent vector field X on M with only finitely many isolated singular points $p_i, 1 \leq i \leq r$. For each p_i , we choose a ε -ball neighborhood D_i , where ε is a sufficiently small positive number such that p_i is the only singular point of X in D_i . Let $C_i = \partial D_i$, then C_i is a simple closed curve with induced orientation from M on D_i . Thus the tangent vector field X determines a smooth orthogonal frame field $\{e_1, e_2\}$ on $M - \bigcup_i D_i$ that is orientation consistent, with $e_1 = X/|X|$. Suppose $\theta_{12} = De_1 \cdot e_2$. On $M - \bigcup_i D_i$, we have

$$d\theta_{12} = \Omega_{12} = -K d\sigma.$$

Also, by the Stokes' Formula,

$$\int_{M - \bigcup_i D_i} K d\sigma = - \int_{M - \bigcup_i D_i} d\theta_{12} = \sum_{i=1}^r \int_{C_i} \theta_{12}.$$

Since the frame field $\{e_1, e_2\}$ is actually well-defined on $M - \{p_i, 1 \leq i \leq r\}$, the equation still holds as $\varepsilon \rightarrow 0$. Also, since K is a continuously differentiable function defined on the whole M , we have

$$\lim_{\varepsilon \rightarrow 0} \int_{M - \bigcup_i D_i} K d\sigma = \int_M K d\sigma.$$

Noting that we also have

$$\lim_{\varepsilon \rightarrow 0} \sum_{i=1}^r \int_{C_i} \theta_{12} = 2\pi \sum_{i=1}^r I_{p_i},$$

it follows that

$$\frac{1}{2\pi} \int_M K d\sigma = \sum_{i=1}^r I_{p_i}.$$

Since the left hand side is independent of the tangent vector field X , we may construct a special one as follows. Choose a triangulation of M with f faces, e edges and v vertices. Then we can construct a smooth tangent vector field X such that the center of mass of each face, the midpoint of each edge, and each vertex is a singular point, whose index is $+1$, -1 , and $+1$, respectively. For this tangent vector we have

$$\sum_{i=1}^r I_{p_i} = f - e + v = \chi(M).$$

Hence

$$\frac{1}{2\pi} \int_M K d\sigma = \chi(M).$$

□

The above proof also implies the **Hopf's Index Theorem** below.

Theorem 4.4.2 (Hopf's Index Theorem) Suppose there is a smooth tangent vector field on a compact oriented 2-dimensional Riemannian manifold with finitely many singular points. Then the sum of its indices at the various singular points is equal to the Euler characteristic of the manifold.

Suppose C is a smooth curve on M , and a_1 is a unit tangent vector to C . Choose a unit normal vector a_2 to C such that the orientation determined by $\{a_1, a_2\}$ is consistent with that of M . Since Da_1 is colinear with a_2 , we may assume

$$\kappa_g = \frac{Da_1}{ds} \cdot a_2.$$

κ_g is called the **geodesic curvature** of C . A necessary and sufficient condition for C to be a geodesic curve is

$$\kappa_g \equiv 0.$$

Suppose D is a compact domain with boundary in an oriented 2-dimensional Riemannian manifold M whose boundary ∂D is composed of finitely many piecewise smooth simple closed curves with induced orientation from D .

Suppose the interior angle of ∂D at each vertex p_i is $\alpha_i, 1 \leq i \leq l$. By the similar method we can prove the **Gauss-Bonnet Formula**

$$\sum_{i=1}^l (\pi - \alpha_i) - \int_{\partial D} \kappa_g ds + \int_D K d\sigma = 2\pi \cdot \chi(D),$$

where κ_g is the geodesic curvature along ∂D . If D is a geodesic triangle in M , and ∂D is a closed curve composed of three geodesic segments, then $\chi(D) = 1$ and therefore

$$\alpha_1 + \alpha_2 + \alpha_3 - \pi = \int_D K d\sigma.$$

5 Lie Groups

5.1 Lie Groups

Definition 5.1.1 Let G be a nonempty set. If

1. G is a group;
2. G is an r -dimensional smooth manifold; and
3. the inverse map $\tau : G \rightarrow G$ such that $\tau(g) = g^{-1}$ and the multiplication map $\varphi : G \times G \rightarrow G$ such that $\varphi(g_1, g_2) = g_1 \cdot g_2$ are both smooth maps,

then G is called an r -dimensional **Lie group**.

Since $\tau^2 = \text{id} : G \rightarrow G$, τ is a diffeomorphism from G to itself. For $g \in G$, the **right translation** by g on G is $R_g : G \rightarrow G$ such that $R_g(x) = \varphi(x, g) = x \cdot g$, and the **left translation** is $L_g : G \rightarrow G$ such that

$$L_g(x) = \varphi(g, x) = g \cdot x.$$

Since the inverse of L_g is $L_{g^{-1}}$ and the inverse of R_g is $R_{g^{-1}}$, L_g and R_g are both diffeomorphisms from G to itself.

If G_1, G_2 are Lie groups, then the product manifold $G_1 \times G_2$ can also be viewed as the product of groups. Therefore $G_1 \times G_2$ is also a Lie group, called the **direct product** of the Lie groups G_1 and G_2 .

Example 5.1.1 $\text{GL}(n; \mathbb{R})$ is the set of nondegenerate $n \times n$ real matrices with matrix multiplication for its group operation. Since $\text{GL}(n; \mathbb{R})$ is an

open subset of \mathbb{R}^{n^2} , it has the differentiable structure induced from \mathbb{R}^{n^2} .

Suppose

$$A = (A_i^j), \quad B = (B_i^j) \in \mathrm{GL}(n; \mathbb{R}).$$

Then

$$(A \cdot B)_i^j = A_i^k B_k^j.$$

Since the right hand side is a polynomial of the elements of the matrices A and B , the map

$$\varphi(A, B) = A \cdot B$$

is smooth. Moreover, since the elements of A^{-1} are rational functions of the elements A_i^j , the inverse map is also smooth. Hence $\mathrm{GL}(n; \mathbb{R})$ is an n^2 -dimensional Lie group, called the **general linear group**. Similarly the multiplicative group $\mathrm{GL}(n; \mathbb{C})$ of nondegenerate $n \times n$ complex matrices is a $2n^2$ -dimensional Lie group.

Example 5.1.2 Suppose G is a Lie group and H is a subgroup of G . If H is regular submanifold of G , then it can be shown that the restrictions of the multiplicative map and the inverse map, namely

$$\varphi|_{H \times H} : H \times H \rightarrow H, \quad \tau|_H : H \rightarrow H,$$

are both smooth.

Suppose

$$\mathrm{SL}(n; \mathbb{R}) = \{A \in \mathrm{GL}(n; \mathbb{R}) \mid \det A = 1\}$$

and

$$\mathrm{O}(n; \mathbb{R}) = \{A \in \mathrm{GL}(n; \mathbb{R}) \mid A \cdot A^T = I\}.$$

Then $\mathrm{SL}(n; \mathbb{R})$ and $\mathrm{O}(n; \mathbb{R})$ are both subgroups and regular submanifolds of $\mathrm{GL}(n; \mathbb{R})$. Therefore they are Lie groups. $\mathrm{SL}(n; \mathbb{R})$ and $\mathrm{O}(n; \mathbb{R})$ are called the **special linear group** and the **real orthogonal group**, respectively.

Suppose G is an r -dimensional Lie group with identity e . Since for every $a \in G$, the map $R_{a^{-1}}$ is a diffeomorphism from G to itself that takes a to e , the tangent map $(R_{a^{-1}})_* : G_a \rightarrow G_e$ is a linear isomorphism, where G_a is the tangent space of G at a . Suppose $X \in G_a$. Let

$$\omega(X) = (R_{a^{-1}})_* X.$$

Then ω is a differential 1-form defined on G with values in G_e , called the **right fundamental differential form** or **Maurer-Cartan form** of the Lie group G . If we choose a basis δ_i , $1 \leq i \leq r$ for G_e , then we may write

$$\omega = \omega^i \delta_i,$$

where $\omega^i, 1 \leq i \leq r$ are r differential 1-forms on G that are linearly independent everywhere.

Choose a local coordinate system $(U; x^i)$ and $(W; y^i)$ at points e and a , respectively. When U is sufficiently small, there exists a neighborhood $W_1 \subset W$ of a such that $\varphi(U \times W_1) \subset W$. Choose

$$\delta_i = \left. \frac{\partial}{\partial x^i} \right|_e$$

and let

$$\varphi^i(x, y) = y^i \circ \varphi(x, y), \quad (x, y) \in U \times W_1.$$

Then the isomorphism $(R_a)_* : G_e \rightarrow G_a$ is given as

$$(R_a)_* \delta_i = \left. \frac{\partial \varphi^j(x, a)}{\partial x^i} \right|_{x=e} \cdot \left. \frac{\partial}{\partial y^j} \right|_a.$$

Because

$$(R_{a^{-1}})_* \circ (R_a)_* = \text{id} : G_e \rightarrow G_e,$$

we have

$$(R_{a^{-1}})_* \left. \frac{\partial}{\partial y^i} \right|_a = \Lambda_i^j(a) \delta_j,$$

Where $(\Lambda_i^j(a))$ is the inverse matrix of $((\partial \varphi^i(x, a) / \partial y^j)_{x=e})$. Therefore

$$\omega^i = \Lambda_i^j(a) \cdot dy^j,$$

hence ω^i is a smooth differential 1-form.

Theorem 5.1.1 Suppose $\sigma : G \rightarrow G$ is a smooth map. If σ is a right translation of the Lie group G , then it preserves the right fundamental differential form, i.e.,

$$\sigma^* \omega^i = \omega^i, \quad 1 \leq i \leq r.$$

Proof. Suppose σ is the right translation R_x for some $x \in G$. Then for any $X \in G_a$ we have

$$\begin{aligned} ((R_x)^* \omega)(X) &= \omega((R_x)_* X) \\ &= (R_{(ax)^{-1}})_* \circ (R_x)_* X \\ &= (R_{a^{-1}})_* X \\ &= \omega(X). \end{aligned}$$

Hence

$$(R_x)_* \omega = \omega.$$

□

Because $d \circ \sigma^* = \sigma^* \circ d$ holds for any smooth map $\sigma : G \rightarrow G$, $d\omega^i$ is still invariant under right-translation. Let

$$d\omega^i = -\frac{1}{2}c_{jk}^i \omega^j \wedge \omega^k,$$

where

$$c_{jk}^i + c_{kj}^i = 0.$$

Because ω^i and $d\omega^i$ are both right-invariant, the c_{jk}^i are constants, called the **structure constants** of the Lie group. The above equation is called the **structure equation** or the **Maurer-Cartan equation** of the Lie group G .

Theorem 5.1.2 The structure constants c_{jk}^i satisfy the Jacobi identity

$$c_{jk}^i c_{hl}^j + c_{jh}^i c_{lk}^j + c_{jl}^i c_{kh}^j = 0.$$

Proof. Exteriortly differentiating

$$d\omega^i = -\frac{1}{2}c_{jk}^i \omega^j \wedge \omega^k,$$

we get

$$\begin{aligned} 0 &= -\frac{1}{2}c_{jk}^i (d\omega^j \wedge \omega^k - \omega^j \wedge d\omega^k) \\ &= \frac{1}{2}c_{jk}^i c_{hl}^j \omega^h \wedge \omega^l \wedge \omega^k \\ &= \frac{1}{6}(c_{jk}^i c_{hl}^j + c_{jh}^i c_{lk}^j + c_{jl}^i c_{kh}^j) \omega^h \wedge \omega^l \wedge \omega^k. \end{aligned}$$

The terms inside the parentheses are skew-symmetric with respect to k, h, l . Hence the Jacobi identity follows. \square

Definition 5.1.2 Suppose X is a smooth tangent vector field on a Lie group G . If, for any $a \in G$, we have

$$(R_a)_* X = X,$$

then we say that the tangent vector field X is a **right-invariant vector field** on G .

Choose an arbitrary tangent vector $X_e \in G_e$, and let $X_a = (R_a)_*X_e$ for each $a \in G$. Then we obtain a smooth tangent vector field X on G . For any $a, x \in G$, we have

$$(R_x)_*X_a = (R_x)_* \circ (R_a)_*X_e = (R_{ax})_*X_e = X_{ax},$$

hence X is right-invariant. Let X_i denote the right-invariant vector field obtained by the right translation of $\delta_i \in G_e$. Then the $X_i, 1 \leq i \leq r$ are tangent vector fields which are linearly independent everywhere on G , and any right-invariant vector field on G can be expressed as a linear combination of the X_i with constant coefficients. Hence the set of right-invariant vector fields on G forms an r -dimensional vector space, denoted by \mathcal{G} , and is isomorphic to G_e .

By the construction of X_i we have

$$\omega(X_i) = \delta_i,$$

that is,

$$\omega^j(X_i) = \langle X_i, \omega^j \rangle = \delta_i^j.$$

Thus the fundamental differential forms $\omega^i, 1 \leq i \leq r$ and the right-invariant vector fields $X_j, 1 \leq j \leq r$ constitute sets of mutually dual coframe fields and frame fields, respectively, on the Lie group G . Therefore a tangent vector field X on G is right-invariant if and only if the value of the right fundamental form on X is constant.

Theorem 5.1.3 If X, Y are right-invariant vector fields on G , then $[X, Y]$ is also a right-invariant vector field on G .

Proof. First we have

$$\langle X \wedge Y, d\omega^i \rangle = X \langle Y, \omega^i \rangle - Y \langle X, \omega^i \rangle - \langle [X, Y], \omega^i \rangle$$

from Lemma 3.1.3. From the structure equation we obtain

$$\langle X \wedge Y, d\omega^i \rangle = -\frac{1}{2} c_{jk}^i \langle X \wedge Y, \omega^j \wedge \omega^k \rangle = -c_{jk}^i \omega^j(X) \omega^k(Y).$$

Since X, Y are both right-invariant vector fields, we have $\omega^j(X), \omega^k(Y)$ are both constant. Therefore

$$\omega^i([X, Y]) = c_{jk}^i \omega^j(X) \omega^k(Y)$$

is also constant. This implies that $[X, Y]$ is right-invariant. \square

The Poisson bracket is then closed in \mathcal{G} and defines a multiplication operation on \mathcal{G} , which satisfies the following conditions:

1. Distributive Law: $[a_1 X_1 + a_2 X_2, Y] = a_1 [X_1, Y] + a_2 [X_2, Y]$;
2. Skew-symmetric Law: $[X, Y] = -[Y, X]$;
3. Jacobi Identity: $[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0$.

If an n -dimensional real vector space has a multiplication operation satisfying the distributive law, the skew-symmetric law and the Jacobi identity, then we call it an n -dimensional **Lie algebra**. Then vector space \mathcal{G} of all right-invariant vector fields on a Lie group G is an r -dimensional Lie algebra, called the **Lie algebra** of the Lie group G .

The structure constants of a Lie group provide the multiplication table for its Lie algebra \mathcal{G} . In fact, by the proof of the Theorem 5.1.3, we have

$$\omega^i([X_j, X_k]) = c_{jk}^i,$$

and then

$$[X_j, X_k] = c_{jk}^i X_i.$$

The skew-symmetry of the structure constants c_{jk}^i with respect to the lower indices and the Jacobi identity satisfied by these constants correspond to the skew-symmetry of the Poisson bracket and its Jacobi identity. Thus if we let

$$[\delta_j, \delta_k] = c_{jk}^i \delta_i,$$

then G_e also becomes an r -dimensional Lie algebra, and G_e and \mathcal{G} are isomorphic as Lie algebras. Usually the Lie algebra G_e is also called the **Lie algebra** of the Lie group G .

Example 5.1.3 Suppose $A = (A_i^j) \in \mathrm{GL}(n; \mathbb{R})$. Then $A_i^j, 1 \leq i, j \leq n$ is a coordinate system on the manifold $\mathrm{GL}(n; \mathbb{R})$, and then $dA_i^j, 1 \leq i, j \leq n$ gives a coframe field on $\mathrm{GL}(n; \mathbb{R})$. The right fundamental differential form of $\mathrm{GL}(n; \mathbb{R})$ can be written as

$$\omega = dA \cdot A^{-1}.$$

Exterior differentiation then yields

$$\begin{aligned} d\omega &= -dA \wedge dA^{-1} = -(dA \cdot A^{-1}) \wedge (A \cdot dA^{-1}) \\ &= (dA \cdot A^{-1}) \wedge (dA \cdot A^{-1}) = \omega \wedge \omega. \end{aligned}$$

Let $\mathrm{gl}(n; \mathbb{R})$ denote the tangent space at the identity element I in the Lie group $\mathrm{GL}(n; \mathbb{R})$. It is the n^2 -dimensional vector space with $n \times n$ real matrices as its elements. In this representation, $\mathrm{gl}(n; \mathbb{R})$ has a basis $E_i^j, 1 \leq i, j \leq n$, where E_i^j denote the $n \times n$ matrix with the value 1 for the element at the intersection of the j -th row and the i -th column, and 0 for other entries. Hence we may write

$$\omega = \omega_i^j E_i^j = (\omega_i^j).$$

From

$$d\omega = \omega \wedge \omega$$

we have

$$d\omega_i^j = \omega_i^k \wedge \omega_k^j = \frac{1}{2}(\delta_i^p \delta_q^j \delta_s^r - \delta_i^r \delta_s^j \delta_q^p) \omega_p^s \wedge \omega_r^q.$$

Hence the structure constants of the Lie group $\mathrm{GL}(n; \mathbb{R})$ are

$$c_{(p,s)(r,q)}^{(i,j)} = -\delta_i^p \delta_q^j \delta_s^r + \delta_i^r \delta_s^j \delta_q^p.$$

The multiplication table for the Lie algebra $\mathrm{gl}(n; \mathbb{R})$ is then

$$[E_s^p, E_q^r] = \delta_q^p E_s^r - \delta_s^r E_q^p = E_q^r \cdot E_s^p - E_s^p \cdot E_q^r.$$

Suppose $A, B \in \mathrm{gl}(n; \mathbb{R})$, then the above formula implies that

$$[A, B] = B \cdot A - A \cdot B.$$

Definition 5.1.3 Suppose G, H are two Lie groups. If there is a smooth map $f : H \rightarrow G$ which is also a homomorphism between the groups, then f is called a **homomorphism** of Lie groups from H to G . If f is also a diffeomorphism, then it is called an **isomorphism** of Lie groups from H to G .

Theorem 5.1.4 Suppose $f : H \rightarrow G$ is a Lie group homomorphism, then f induces a homomorphism $f_* : \mathcal{H} \rightarrow \mathcal{G}$ between the Lie algebras. If f is a Lie group isomorphism, then f_* is an isomorphism between the Lie algebras.

Proof. Let f_* denote the tangent map of the smooth map f . First we show that f_* maps the right-invariant vector fields of the Lie group H to the right-invariant vector fields of the Lie group G . Choose any $X_e \in H_e$, and let $Y_{e'} = f_* X_e \in G_{e'}$, where e is the identity element of H and $e' = f(e)$ is the identity element of G . Let X, Y be the right-invariant vector fields

generated by $X_e, Y_{e'}$ on their respective Lie groups. Then for any $a \in H$, we have

$$f_* X_a = f_* \circ (R_a)_* X_e = (R_{a'})_* \circ f_* X_e = (R_{a'})_* Y_{e'} = Y_{a'},$$

where $a' = f(a) \in G$. Thus the image of a right-invariant vector field on H under f_* can be extended to a right-invariant vector field on G . Use the notation $f_* : \mathcal{H} \rightarrow \mathcal{G}$ for this correspondence. Since the tangent map f_* commutes with the Poisson bracket product of vector fields. Hence $f_* : \mathcal{H} \rightarrow \mathcal{G}$ defined above is a homomorphism between Lie algebras.

When f is an isomorphism between Lie groups, f_* is also invertible and hence is an isomorphism between Lie algebras. \square

Suppose G is an r -dimensional Lie group. A homomorphism from the Lie group G to $\mathrm{GL}(n; \mathbb{R})$ is called a **representation** of order n of the Lie group G . A natural representation of order r for each r -dimensional Lie group can be defined as follows.

Suppose $x \in G$, and let

$$\alpha_x(g) = x \cdot g \cdot x^{-1} = L_x \circ R_{x^{-1}}(g).$$

Then α_x is an automorphism of the Lie group G , called the **inner automorphism** of G . The tangent map $(\alpha_x)_*$ of α_x determines an automorphism of the Lie algebra G_e . Let $\mathrm{Ad}(x) = (\alpha_x)_* : G_e \rightarrow G_e$, then $\mathrm{Ad}(x)$ is a nondegenerate linear transformation on the linear space G_e , and is therefore an element of $\mathrm{GL}(r; \mathbb{R})$. Hence we obtain a map $\mathrm{Ad} : G \rightarrow \mathrm{GL}(r; \mathbb{R})$. It can be verified that Ad is a homomorphism between groups. If we use local coordinates, Ad is given by smooth functions of the local coordinates, hence Ad is a homomorphism between Lie groups.

Definition 5.1.4 The Lie group homomorphism $\mathrm{Ad} : G \rightarrow \mathrm{GL}(r; \mathbb{R})$ given above is called the **adjoint representation** of the Lie group G .

The tangent map of the adjoint representation $\mathrm{Ad} : G \rightarrow \mathrm{GL}(r; \mathbb{R})$ induces a homomorphism ad from the Lie algebra G_e to $\mathrm{gl}(r; \mathbb{R})$, called the **adjoint representation** of the Lie algebra G_e of the Lie group G . Since $\mathrm{gl}(r; \mathbb{R})$ can be viewed as a set of linear transformations on G_e , the adjoint representation ad actually assigns to each $X \in G_e$ a linear transformation $\mathrm{ad}(X)$ on G_e .

References

[1] S. S. Chern, W. H. Chen, and K. S. Lam. *Lectures on Differential Geometry*. World Scientific, 2000.