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We are trying to use the categorical language to describe the sheaf theory, mostly using the
universal properties.

1 Sheaves of sets
Construct a contravariant functor 𝖮𝗉𝖾𝗇 ∶ 𝖳𝗈𝗉op → 𝖢𝖺𝗍 . For each topological space 𝛸, we define
𝖮𝗉𝖾𝗇(𝛸) to be the category whose objects are open subsets of 𝛸 and whose morphisms are inclusions
of open sets. For each continuous map 𝑓 ∶ 𝛸 → 𝑌, the functor 𝖮𝗉𝖾𝗇(𝑓) sends an open set 𝑉 ⊂ 𝑌 to
the open set 𝑓−1(𝑉) ⊂ 𝛸, and maps the inclusions correspondingly.

Definition 1.1 (presheaf) A presheaf (of sets) on a topological space 𝛸 is a contravariant
functor

ℱ ∶ 𝖮𝗉𝖾𝗇(𝛸)op → 𝖲𝖾𝗍 .

The category of presheaves on 𝛸, with morphisms given by natural transformations, is denoted
by 𝗉𝖲𝗁(𝛸, 𝖲𝖾𝗍), i.e.,

𝗉𝖲𝗁(𝛸, 𝖲𝖾𝗍) = 𝖥𝗎𝗇(𝖮𝗉𝖾𝗇(𝛸)op, 𝖲𝖾𝗍).
If ℱ is a presheaf on 𝛸 and 𝑈 ⊂ 𝑉 ⊂ 𝛸 are open sets, then we denote the restriction morphism

ℱ(𝑉) → ℱ(𝑈)

by 𝑟𝑉𝑈 or (−)|𝑈.

Definition 1.2 (sheaf) A sheaf (of sets) on a topological space 𝛸 is a presheaf ℱ such that for
every open cover {𝑈𝑖}𝑖∈𝛪 of an open set 𝑈 ⊂ 𝛸, the following diagram is an equalizer:

ℱ(𝑈) ∏𝑖∈𝛪ℱ(𝑈𝑖) ∏𝑗,𝑘∈𝛪ℱ(𝑈𝑗 ∩ 𝑈𝑘)
𝜋

𝜌
𝜆

where 𝜋 is given by the restriction morphisms ℱ(𝑈) → ℱ(𝑈𝑖), 𝜆 is given by the restriction morphisms
ℱ(𝑈𝑖) → ℱ(𝑈𝑖 ∩ 𝑈𝑘) and 𝜌 is given by the restriction morphisms ℱ(𝑈𝑖) → ℱ(𝑈𝑗 ∩ 𝑈𝑖).

The category of sheaves on 𝛸, with morphisms given by natural transformations, is denoted by
𝖲𝗁(𝛸, 𝖲𝖾𝗍). It is clear that 𝖲𝗁(𝛸, 𝖲𝖾𝗍) is a full subcategory of 𝗉𝖲𝗁(𝛸, 𝖲𝖾𝗍).

Example 1.1 (sheaf of sections) Suppose 𝛦 and 𝛸 are a topological spaces and 𝑝 ∶ 𝛦 → 𝛸 is
a continuous map. For each open subset 𝑈 ⊂ 𝛸, a section of (𝛦, 𝑝) on 𝑈 is a continuous map
𝑠 ∶ 𝑈 → 𝛦 such that 𝑝(𝑠(𝑥)) = 𝑥 for each 𝑥 ∈ 𝑈. Denote the set of sections of (𝛦, 𝑝) on 𝑈 by Γ(𝑈, 𝛦).
The assignment

𝑈 ↦ Γ(𝑈, 𝛦)
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defines a presheaf on 𝛸, with the restriction morphisms given by the restriction of sections. This is
actually a sheaf, called the sheaf of sections of (𝛦, 𝑝).

The sheafification of presheaves is defined as the left adjoint of the inclusion (or forgetful)
functor

𝖲𝗁(𝛸, 𝖲𝖾𝗍) → 𝗉𝖲𝗁(𝛸, 𝖲𝖾𝗍).
The sheafification of a presheaf ℱ is usually denoted by ℱ+.

The sheafification of a presheaf can be constructed explictly using the concept of etale spaces.

Definition 1.3 (etale space) An etale space over a topological space 𝛸 is a pair (𝛦, 𝑝), where 𝛦
is a topological space and 𝑝 ∶ 𝛦 → 𝛸 is a local homeomorphism.

The category of etale spaces over 𝛸 is denoted by 𝖤𝗍(𝛸). The morphisms in 𝖤𝗍(𝛸) are continuous
maps 𝑓 ∶ (𝛦, 𝑝) → (𝛦′, 𝑝′) such that 𝑝′ ∘ 𝑓 = 𝑝.

Theorem 1.1 For a topological space 𝛸, there are functors

𝐹 ∶ 𝖤𝗍(𝛸) → 𝖲𝗁(𝛸, 𝖲𝖾𝗍)

and
𝐺 ∶ 𝗉𝖲𝗁(𝛸, 𝖲𝖾𝗍) → 𝖤𝗍(𝛸)

such that 𝐹 is a category equivalence and the following diagrams commutes up to natural isomor-
phism:

𝖤𝗍(𝛸) 𝖲𝗁(𝛸, 𝖲𝖾𝗍) 𝗉𝖲𝗁(𝛸, 𝖲𝖾𝗍)𝐹
𝜄

𝐺

(−)+

where 𝜄 is the inclusion functor and (−)+ is the sheafification functor.

Proof. The functor 𝐹 is defined such that 𝐹(𝛦, 𝑝) is the sheaf of sections of (𝛦, 𝑝), and the morphism
𝐹(𝑓) is given by the compostion of 𝑓 with the sections.

Suppose ℱ is a presheaf on 𝛸. For each 𝑥 ∈ 𝛸, define the stalk of ℱ at 𝑥 to be the set

ℱ𝑥 = lim−−→ℱ(𝑈),

where the limit is taken over all open sets 𝑈 containing 𝑥. Let

𝛦 = ∐
𝑥∈𝛸

ℱ𝑥

and define the map
𝑝 ∶ 𝛦 → 𝛸

by assigning 𝑥 ∈ 𝛸 to the elements in the stalk ℱ𝑥. For each open set 𝑈 ⊂ 𝛸 and 𝑠 ∈ ℱ(𝑈), there is
a function 𝑠 ∶ 𝑈 → 𝛦 mapping each 𝑥 ∈ 𝑈 to the corresponding element of 𝑠 in ℱ𝑥. Give 𝛦 the finest
topology such that 𝑠 is continuous for each open subset 𝑈 ⊂ 𝛸 and 𝑠 ∈ ℱ(𝑈). It can be verified that
(𝛦, 𝑝) is an etale space over 𝛸.

Now suppose 𝑓 ∶ ℱ → 𝒢 is a morphism of presheaves. Using the universal property of the
inductive limit, we can deduce a unique map

𝑓𝑥 ∶ ℱ𝑥 → 𝒢𝑥
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for each 𝑥 ∈ 𝛸 such that for each neighborhood 𝑈 of 𝑥, the following diagram commutes:

ℱ(𝑈) 𝒢(𝑈)

ℱ𝑥 𝒢𝑥

𝑓(𝑈)

𝑓𝑥

Suppose (𝛦, 𝑝) is the etale space constructed from ℱ and (𝛦′, 𝑝′) is the etale space constructed from
𝒢. Putting these 𝑓𝑥 together, we get a morphism

𝑓 ∶ (𝛦, 𝑝) → (𝛦′, 𝑝′)

in 𝖤𝗍(𝛸). The functor 𝐺 is then defined by assigning to each presheaf ℱ the etale space (𝛦, 𝑝)
constructed above.

For each presheave ℱ, the corresponding sheaf 𝐹(𝐺(ℱ)) is a sheafification of ℱ, called the sheaf
generated by the presheaf ℱ.

Remark Suppose (𝛦, 𝑝) is an etale space over 𝛸 and ℱ is the sheaf of sections of (𝛦, 𝑝). Then
the elements in ℱ𝑥 is called the germs of sections of (𝛦, 𝑝) at 𝑥. Two sections 𝑠, 𝑡 of (𝛦, 𝑝) on
neighborhoods 𝑈 and 𝑉 of 𝑥 define the same germ at 𝑥 if and only if there exists a neighborhood
𝑊 ⊂ 𝑈 ∩ 𝑉 of 𝑥 such that 𝑠|𝑊 = 𝑡|𝑊.

Remark The sheafification process preserves the stalks. Indeed, for each presheaf ℱ, the stalk of
ℱ+ at 𝑥 is naturally isomorphic to

lim−−→Γ(𝑈,∐
𝑦∈𝛸

ℱ𝑦) = ℱ𝑥,

where the limit is taken over all open sets 𝑈 containing 𝑥. This isomorphism is actually canonical.

Using the category equivalence betwen 𝖤𝗍(𝛸) and 𝖲𝗁(𝛸, 𝖲𝖾𝗍), we can also figure out the condition
of a morphism of sheaves to be injective ot surjective. Suppose ℱ and 𝒢 are sheaves on 𝛸 and
𝑓 ∶ ℱ → 𝒢 is a morphism of sheaves. Then 𝑓 is injective (surjective) if and only if the corresponding
morphism of etale spaces 𝑓 ∶ (𝛦, 𝑝) → (𝛦′, 𝑝′) is injective (surjective), which is then equivalent
to that 𝑓𝑥 is injective (surjective) for each 𝑥 ∈ 𝛸. It can be seen that if 𝑓 is injective, then
𝑓(𝑈) ∶ ℱ(𝑈) → 𝒢(𝑈) is injective for each open set 𝑈 ⊂ 𝛸. However, if 𝑓 is surjective, it is not
necessarily true that 𝑓(𝑈) is surjective for each open set 𝑈 ⊂ 𝛸.

The subsheaf and quotient sheaf of a sheaf ℱ can be defined as the subobject and quotient
object in the category 𝖲𝗁(𝛸, 𝖲𝖾𝗍). Specifically, a subsheaf of ℱ is a sheaf 𝒢 together with an injective
morphism 𝑖 ∶ 𝒢 → ℱ, and a quotient sheaf of ℱ is a sheaf 𝒬 together with a surjective morphism
𝑞 ∶ ℱ → 𝒬. Similarly we can consider the direct product of sheaves and the inductive limit of a
family of sheaves.

Two important constructions in sheaf theory are the direct image sheaf and the inverse image
sheaf.

Suppose 𝑓 ∶ 𝛸 → 𝑌 is a continuous map between topological spaces 𝛸 and 𝑌. Then 𝑓 induces a
functor

𝖮𝗉𝖾𝗇(𝑓) ∶ 𝖮𝗉𝖾𝗇(𝑌) → 𝖮𝗉𝖾𝗇(𝛸).
For each presheaf ℱ on 𝛸, define the direct image 𝑓∗ℱ to be the presheaf on 𝑌 given by the
composition

𝖮𝗉𝖾𝗇(𝑌) 𝖮𝗉𝖾𝗇(𝛸) 𝖲𝖾𝗍𝖮𝗉𝖾𝗇(𝑓) ℱ .
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It can be verified that 𝑓∗ℱ is a sheaf on 𝑌. The direct image 𝑓∗ gives a functor
𝑓∗ ∶ 𝖲𝗁(𝛸, 𝖲𝖾𝗍) → 𝖲𝗁(𝑌, 𝖲𝖾𝗍).

Suppose ℱ is a sheaf on 𝛸 and 𝒢 is a sheaf on 𝑌, with the corresponding etale spaces 𝑝 ∶ 𝛦 → 𝛸
and 𝑝′ ∶ 𝛦′ → 𝑌. A morphism 𝑔 ∶ ℱ → 𝒢 compatible with 𝑓 is a continuous map 𝑔 ∶ 𝛦 → 𝛦′ such
that the following diagram commutes:

𝛦 𝛦′

𝛸 𝑌

𝑔

𝑝 𝑝′

𝑓

The inverse image 𝑓−1𝒢 of 𝒢 is the sheaf on 𝛸, together with a morphism 𝑓̄ ∶ 𝑓−1𝒢 → 𝒢 compatible
with 𝑓, satisfying the following universal property: for each sheaf ℱ on 𝛸 and each morphism
𝑔 ∶ ℱ → 𝒢 compatible with 𝑓, there exists a unique morphism ℎ ∶ ℱ → 𝑓−1𝒢 (of sheaves on 𝛸) such
that 𝑔 = 𝑓̄ ∘ ℎ. The inverse image 𝑓−1 gives a functor

𝑓−1 ∶ 𝖲𝗁(𝑌, 𝖲𝖾𝗍) → 𝖲𝗁(𝛸, 𝖲𝖾𝗍).
The inverse image 𝑓−1𝒢 can be constructed explicitly by the map

𝑈 ↦ 𝑓−1𝒢(𝑈) ∶= {𝑠 ∈ Γ(𝑈, 𝛦′) ∣ 𝑠(𝑥) ∈ 𝒢𝑓(𝑥) for each 𝑥 ∈ 𝑈}.
An equivalent constuction of the inverse image is given by

𝑓−1𝒢(𝑈) = lim−−→𝒢(𝑉),
where the inductive limit is taken over all open set 𝑉 ⊂ 𝑌 such that 𝑓(𝑈) ⊂ 𝑉.

If 𝛸 is a subspace of 𝑌 and 𝑓 ∶ 𝛸 → 𝑌 is the inclusion map, then the inverse image 𝑓−1𝒢 is called
the restriction sheaf of 𝒢 to 𝛸, and is denoted by 𝒢|𝛸

Theorem 1.2 For each continuous map 𝑓 ∶ 𝛸 → 𝑌 between topological spaces, the functors
𝑓−1 ∶ 𝖲𝗁(𝑌, 𝖲𝖾𝗍) → 𝖲𝗁(𝛸, 𝖲𝖾𝗍) and 𝑓∗ ∶ 𝖲𝗁(𝛸, 𝖲𝖾𝗍) → 𝖲𝗁(𝑌, 𝖲𝖾𝗍) form an adjoint pair, i.e., there is a
natural isomorphism for each sheaf ℱ on 𝛸 and each sheaf 𝒢 on 𝑌

Hom𝖲𝗁(𝛸,𝖲𝖾𝗍)(𝑓−1𝒢,ℱ) = Hom𝖲𝗁(𝑌,𝖲𝖾𝗍)(𝒢, 𝑓∗ℱ).

2 Sheaves of modules
The construction of sheaves of sets can be generalized to sheaves of objects in an arbitrary category
𝒞.

Definition 2.1 (presheaf) A (𝒞-valued) presheaf on a topological space 𝛸 is a contravariant
functor

ℱ ∶ 𝖮𝗉𝖾𝗇(𝛸)op → 𝒞.

Definition 2.2 (sheaf) A (𝒞-valued) sheaf on a topological space 𝛸 is a presheaf ℱ such that
for every open cover {𝑈𝑖}𝑖∈𝛪 of an open set 𝑈 ⊂ 𝛸, the following diagram is an equalizer:

ℱ(𝑈) ∏𝑖∈𝛪ℱ(𝑈𝑖) ∏𝑗,𝑘∈𝛪ℱ(𝑈𝑗 ∩ 𝑈𝑘)
𝜋

𝜌
𝜆

where 𝜋 is given by the restriction morphisms ℱ(𝑈) → ℱ(𝑈𝑖), 𝜆 is given by the restriction morphisms
ℱ(𝑈𝑖) → ℱ(𝑈𝑖 ∩ 𝑈𝑘) and 𝜌 is given by the restriction morphisms ℱ(𝑈𝑖) → ℱ(𝑈𝑗 ∩ 𝑈𝑖).
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The category of 𝒞-valued presheaves and sheaves on 𝛸 are also defined naturally, denoted by
𝗉𝖲𝗁(𝛸, 𝒞) and 𝖲𝗁(𝛸, 𝒞), respectively.

An 𝖠𝖻-valued (pre-) sheaf is also called a sheaf of abelian groups, and a 𝖱𝗇𝗀-valued (pre-)
sheaf is called a sheaf of rings.

Similarly to the case of (pre-) sheaces of sets, we can define the stalk of a presheaf at a point,
and the sheafification of a presheaf. The stalk of a sheaf ℱ at 𝑥 ∈ 𝛸 is denoted by ℱ𝑥, and the
sheafification of ℱ is denoted by ℱ+.

Example 2.1 Suppose 𝛸 is a topological space and 𝛢 is an abelian group (or a ring). Consider
the presheaf ℱ on 𝛸 given by 𝑈 ↦ 𝛢 for each nonempty open set 𝑈 ⊂ 𝛸. Then the shefification ℱ+

is a sheaf of abelian groups (or rings) on 𝛸, which has the expression as

ℱ+(𝑈) = {𝑓 ∶ 𝑈 → 𝛢 ∣ 𝑓 is locally constant}.

This is called the locally constant sheaf on 𝛸 with values in 𝛢, denoted by 𝛢. The stalk of 𝛢 at
𝑥 ∈ 𝛸 is isomorphic to 𝛢 for each 𝑥 ∈ 𝛸.

Example 2.2 If 𝛸 is a topological space, then the sheaf of continuous functions on 𝛸, given by

𝐶0
𝛸(𝑈) = {𝑓 ∶ 𝑈 → ℝ ∣ 𝑓 is continuous},

is a sheaf of rings on 𝛸. If 𝛭 is a smooth manifold, then the sheaf of smooth functions on 𝛭, given
by

𝐶∞
𝛭(𝑈) = {𝑓 ∶ 𝑈 → ℝ ∣ 𝑓 is smooth},

is a sheaf of rings on 𝛭. If 𝛭 is a complex manifold, then the sheaf of holomorphic functions on
𝛭, given by

𝒪𝛭(𝑈) = {𝑓 ∶ 𝑈 → ℂ ∣ 𝑓 is holomorphic},
is a sheaf of rings on 𝛭.

Definition 2.3 (module over a shef of rings) Suppose 𝛸 is a topological space and 𝒜 is a sheaf
of rings on 𝛸. A (left) 𝒜-module is a sheaf ℳ of abelian groups on 𝛸 such that for each open
set 𝑈 ⊂ 𝛸, ℳ(𝑈) is a (left) 𝒜(𝑈)-module, and that for each open sets 𝑉 ⊂ 𝑈 ⊂ 𝛸, the following
disgram commutes:

𝒜(𝑈) ×ℳ(𝑈) ℳ(𝑈)

𝒜(𝑉) ×ℳ(𝑉) ℳ(𝑉)
where the vertical arrows are the restriction morphisms and the horizontal arrows are the action of
𝒜 on ℳ.

Remark If 𝒜 = 𝛢, then an 𝛢-module is exactly a sheaf of 𝛢-modules on 𝛸. In particular, a
ℤ-module is equivalent to a sheaf of abelian groups on 𝛸.

Remark By taking the inductive limits, we can see that for each 𝑥 ∈ 𝛸, the stalk ℳ𝑥 is naturally
a 𝒜𝑥-module.

A morphism 𝑓 ∶ ℒ → ℳ of 𝒜-modules is a morphism of sheaves of abelian groups such that
for each open set 𝑈 ⊂ 𝛸, 𝑓(𝑈) ∶ ℒ(𝑈) → ℳ(𝑈) is a homomorphism of 𝒜(𝑈)-modules. For two
morphisms 𝑓, 𝑔 ∶ ℒ →ℳ of 𝒜-modules, we define their sum 𝑓 + 𝑔 by

(𝑓 + 𝑔)(𝑈) = 𝑓(𝑈) + 𝑔(𝑈) ∶ ℒ(𝑈) → ℳ(𝑈)
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for each open set 𝑈 ⊂ 𝛸. With respect to this addition, the zero morphism is clear. This gives
a structure of abelian group on the set Hom𝒜(ℒ,ℳ) of morphisms between 𝒜-modules ℒ and ℳ.
The category of 𝒜-modules is denoted by 𝒜 −𝖬𝗈𝖽.

The direct product and the direct sum of 𝒜-modules are defined in the natural way. They give
the product object and the coproduct object in the category 𝒜 −𝖬𝗈𝖽.

For a sheaf𝒜 of rings on 𝛸 and𝒜-modules ℒ andℳ, we can define the sheaf hom ℋℴ𝓂𝒜(ℒ,ℳ)
to be the presheaf of abelian groups on 𝛸 given by

ℋℴ𝓂𝒜(ℒ,ℳ)(𝑈) = Hom𝒜|𝑈(ℒ|𝑈,ℳ|𝑈)

for each open set 𝑈 ⊂ 𝛸. It turns out that ℋℴ𝓂𝒜(ℒ,ℳ) is a sheaf of abelian groups on 𝛸, and if
𝒜 is commutative, then ℋℴ𝓂𝒜(ℒ,ℳ) is canonically an 𝒜-module.

Theorem 2.1 Suppose 𝛸 is a topological space and 𝒜 is a sheaf of commutative rings with identity
on 𝛸. Then for each 𝒜-module ℳ, the sheaf hom ℋℴ𝓂𝒜(𝒜,ℳ) is naturally isomorphic to ℳ as
an 𝒜-module.

An 𝒜-submodule and a quotient 𝒜-module of an 𝒜-module ℳ on 𝛸 are defined to be a
subobject and a quotient object of ℳ in the category 𝒜−𝖬𝗈𝖽, respectively. However, we may have
an alternative intuitive definition. A submodule of ℳ is an 𝒜-module 𝒩 such that for each open
set 𝑈, 𝒩(𝑈) is an 𝒜(𝑈)-submodule of ℳ(𝑈), and that the restiction morphisms commute with
the inclusion of 𝒩(𝑈) into ℳ(𝑈). The quotient 𝒜-module ℳ/𝒩 is then defined to be the sheaf of
abelian groups associated to the presheaf 𝑈 ↦ ℳ(𝑈)/𝒩(𝑈), with the structure of 𝒜-module given
by the induced action of 𝒜(𝑈) on ℳ(𝑈)/𝒩(𝑈). Then for each 𝑥 ∈ 𝛸, the stalk 𝒩𝑥 can be identified
with an 𝒜𝑥-submodule of ℳ𝑥, and the stalk (ℳ/𝒩)𝑥 can be identified with the quotient 𝒜𝑥-module
ℳ𝑥/𝒩𝑥.

Theorem 2.2 Suppose 𝛸 is a topological space and 𝒜 is a sheaf of rings on 𝛸. Then the category
𝒜 −𝖬𝗈𝖽 of 𝒜-modules is an abelian category.

Proof. Suppose 𝑓 ∶ ℒ → ℳ is a morphism of 𝒜-modules. The presheaf 𝑈 ↦ ker𝑓(𝑈) is actually a
sheaf, which is defined to be the kernel of 𝑓. The sheaves associated to the presheaves 𝑈 ↦ im𝑓(𝑈)
and 𝑈 ↦ coker𝑓(𝑈), are define to be the image and cokernel of 𝑓, respectively. We can see that
ker𝑓 is a 𝒜-submodule of ℒ, im𝑓 is a 𝒜-submodule of ℳ and a quotient 𝒜-module of ℒ, and
coker𝑓 is a quotient 𝒜-module of ℳ, all in a natural way. We also have the natural 𝒜-module
isomorphisms

ℒ/ ker𝑓 ∼−→ im𝑓, ℳ/ im𝑓 ∼−→ coker𝑓.

A sequence of 𝒜-modules
ℒ 𝑓−→ℳ 𝑔−→ 𝒩

is called an exact sequence if the image of 𝑓 is equal to the kernel of 𝑔, just as the case of a
general abelian category.

Theorem 2.3 Suppose 𝛸 is a topological space and 𝒜 is a sheaf of rings on 𝛸. Then the sequence
of 𝒜-modules

ℒ 𝑓−→ℳ 𝑔−→ 𝒩
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is exact if and only if for each 𝑥 ∈ 𝛸, the induced sequence of 𝒜𝑥-modules

ℒ𝑥
𝑓𝑥−→ℳ𝑥

𝑔𝑥−→ 𝒩𝑥

is exact.

Remark This shows that the functor 𝒜 −𝖬𝗈𝖽 → 𝒜𝑥 − 𝖬𝗈𝖽 given by

ℒ ↦ ℒ𝑥
is exact for each 𝑥 ∈ 𝛸. However, it worth noting that for an open subset 𝑈 ⊂ 𝛸, the functor

Γ(𝑈, −) ∶ 𝒜 − 𝖬𝗈𝖽 → 𝒜(𝑈) − 𝖬𝗈𝖽

is only left exact.

Example 2.3 Suppose 𝛭 is an 𝑛-dimesnional smooth manifold. For each 𝑝 ≥ 0, consider the
ℝ-module Ω𝑝 of differential 𝑝-forms on 𝛭, where Ω𝑝(𝑈) is the differential 𝑝-forms on 𝑈 for each
open set 𝑈 ⊂ 𝛭. The exterior derivative d gives a morphism Ω𝑝 → Ω𝑝+1 of ℝ-modules for each
𝑝 ≥ 0. Moreover, we can embed ℝ into Ω0 by viewing a locally constant function as a differential
0-form, i.e, a smooth function on 𝛭. Then we obtain a sequence of ℝ-modules

0 ℝ Ω0 Ω1 ⋯ Ω𝑛 0d d d

By Poincare lemma, we have the following exact sequence of ℝ-spaces:

0 ℝ Ω0(ℝ𝑛) Ω1(ℝ𝑛) ⋯ Ω𝑛(ℝ𝑛) 0d d d ,

which implies the exact sequence of stalks at each 𝑥 ∈ 𝛭 as 𝛭 is locally homeomorphic to ℝ𝑛. Thus
the above sequence of sheaves is an exact sequence of ℝ-modules.

Suppose 𝒜 is a sheaf of rings on 𝛸, ℒ is a right 𝒜-module and ℳ is a left 𝒜-module. Then we
can define the tensor product ℒ ⊗𝒜 ℳ to be the sheaf of abelian groups on 𝛸 associated to the
presheaf

𝑈 ↦ ℒ(𝑈) ⊗𝒜(𝑈) ℳ(𝑈)
for each open set 𝑈 ⊂ 𝛸. We can see that (ℒ ⊗𝒜 ℳ)𝑥 is naturally isomorphic to the tensor product
ℒ𝑥 ⊗𝒜𝑥

ℳ𝑥 for each 𝑥 ∈ 𝛸, and that each mid-linear morphism ℒ ×ℳ → 𝒩 of sheaves of abelian
groups factors through the canonical mid-linear morphism ℒ ×ℳ → ℒ⊗𝒜 ℳ.

For a continuous map 𝑓 ∶ 𝛸 → 𝑌 between topological spaces, we can also consider the direct
image and inverse image of sheaves of modules. Suppose 𝒜 is a sheaf of rings on 𝛸 and ℳ is an
𝒜-modules. Then the direct image 𝑓∗𝒜 is a sheaf of rings on 𝑌, and the direct image 𝑓∗ℳ, as a
sheaf of abelian groups, is canonically a 𝑓∗𝒜-module. We then obtain a functor

𝑓∗ ∶ 𝒜 − 𝖬𝗈𝖽 → 𝑓∗𝒜 −𝖬𝗈𝖽 .

Dually, if ℬ is a sheaf of rings on 𝑌 and 𝒩 is a ℬ-module, then the inverse image 𝑓−1ℬ is a sheaf of
rings on 𝛸, and the inverse image 𝑓−1𝒩, as a sheaf of abelian groups, is canonically a 𝑓−1ℬ-module.
This yields another functor

𝑓−1 ∶ ℬ − 𝖬𝗈𝖽 → 𝑓−1ℬ −𝖬𝗈𝖽 .
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Theorem 2.4 Suppose 𝑓 ∶ 𝛸 → 𝑌 is a continuous map, 𝒜 is a sheaf of rings on 𝛸 and ℬ is
a sheaf of rings on 𝑌. Then the functor 𝑓−1 ∶ ℬ − 𝖬𝗈𝖽 → 𝑓−1ℬ − 𝖬𝗈𝖽 is exact, and the functor
𝑓∗ ∶ 𝒜 − 𝖬𝗈𝖽 → 𝑓∗𝒜 −𝖬𝗈𝖽 is left exact.

Definition 2.4 (family of support) Suppose 𝛸 is a topological space. A family of support Φ
on 𝛸 is a nonempty collection of closed sets in 𝛸 such that:

1. if 𝛢, 𝛣 ∈ Φ, then 𝛢 ∪ 𝛣 ∈ Φ;
2. if 𝛢 ∈ Φ and 𝛣 is a closed subset of 𝛢, then 𝛣 ∈ Φ.

Suppose 𝛸 is a topological space, Φ is a family of support on 𝛸 and ℱ is a sheaf of abelian
groups on 𝛸. For each 𝑠 ∈ Γ(ℱ) = ℱ(𝛸), we define the support of 𝑠, denoted by supp(𝑠), to the set
of points 𝑥 ∈ 𝛸 such that 𝑠𝑥 ≠ 0, where 𝑠𝑥 is the corresponding element of 𝑠 in the stalk ℱ𝑥. It is clear
that supp(𝑠) is always a closed set in 𝛸. Consider the subset ΓΦ(ℱ) of Γ(ℱ) given by

ΓΦ(ℱ) = {𝑠 ∈ Γ(ℱ) ∣ supp(𝑠) ∈ Φ}.

We can verify that ΓΦ(ℱ) is a subgroup of the abelian group Γ(ℱ).

Theorem 2.5 Suppose 𝛸 is a topological space, Φ is a family of support on 𝛸. Then the map

ℱ ↦ ΓΦ(ℱ)

gives a left exact functor
ΓΦ ∶ 𝖲𝗁(𝛸, 𝖠𝖻) → 𝖠𝖻 .

3 Extension and lifting of sections
3.1 Flasque sheaves
Definition 3.1 (flasque sheaf) A sheaf ℱ on a topological space 𝛸 is called flasque if for each
open set 𝑈 ⊂ 𝛸, the restriction morphism

ℱ(𝛸) → ℱ(𝑈)

is surjective.

Proposition 3.1 Suppose 𝛸 is a topological space and ℱ is a sheaf on 𝛸. If for each 𝑥 ∈ 𝛸, there
is a neighborhood 𝑈 of 𝛸 such that ℱ|𝑈 is flasque, then ℱ is flasque.

Proof. Fix an open set 𝑈 ⊂ 𝛸 and a section 𝑠 ∈ ℱ(𝑈). Consider the poset

𝛦 = {(𝑈′, 𝑠′) ∣ 𝑈 ⊂ 𝑈′ and 𝑠 = 𝑠′|𝑈},

with the partial order given by

(𝑈′, 𝑠′) ≤ (𝑈″, 𝑠″) ⟺ 𝑈′ ⊂ 𝑈″ and 𝑠′ = 𝑠″|𝑈′ .

Then 𝛦 is a nonempty collection satisfying the condition of Zorn’s lemma, and then we can find a
maximal element (𝑈̃, 𝑠) ∈ 𝛦. We claim that 𝑈̃ = 𝛸. Otherwise, there exists a neighborhood 𝑉 of
𝑥 ∈ 𝛸 ∖ 𝑈̃ such that ℱ|𝑉 is flasque. Then we can find a section 𝑠̄ ∈ ℱ(𝑉) such that 𝑠̄|𝑈̃∩𝑉 = 𝑠|𝑈̃∩𝑉.
The axiom of sheaf yields a section 𝑠′ ∈ ℱ(𝑈̃ ∪𝑉) such that 𝑠′|𝑈̃ = 𝑠, contradicting the maximality of
(𝑈̃, 𝑠). Thus we have 𝑈̃ = 𝛸, and then 𝑠 ∈ ℱ(𝛸), which shows that ℱ is flasque.
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Remark For an element (𝑈′, 𝑠′) ∈ 𝛦, we usually call 𝑠′ a extension of 𝑠 to 𝑈′.

By the definition of direct image, we have the following result directly.

Proposition 3.2 Suppose 𝛸 and 𝑌 are topological spaces, 𝑓 ∶ 𝛸 → 𝑌 is a continuous map and ℱ
is a sheaf on 𝛸. If ℱ is flasque, then the direct image sheaf 𝑓∗ℱ is also flasque.

An important result of flasque sheaves is about the exact sequences.

Theorem 3.3 Suppose 𝛸 is a topological space and
0 → ℒ → ℳ →𝒩 → 0

is an exact sequence of sheaves of abelian groups on 𝛸. If ℒ is flasque, then the induced sequence
0 → ℒ(𝑈) → ℳ(𝑈) → 𝒩(𝑈) → 0

is exact for each open set 𝑈 ⊂ 𝛸.

Proof. Suppose the morphisms of sheaves are 𝑓 ∶ ℒ → ℳ and 𝑔 ∶ ℳ → 𝒩, with induced morphisms
𝑓 and 𝑔̃. As long as Γ(𝑈, −) is left exact,it suffices to show that the morphism ℳ(𝑈) → 𝒩(𝑈) is
surjective. Fix a section 𝑡 ∈ 𝒩(𝑈). Consider the poset

𝛦 = {(𝑉, 𝑠) ∣ 𝑉 ⊂ 𝑈 and 𝑔̃(𝑠) = 𝑡|𝑉}.
The surjectivity of the sheaf morphism ℳ→ 𝒩 implies that 𝛦 is nonempty, and it can be verified
that 𝛦 satisfies the condition of Zorn’s lemma. Thus there is a maximal element (𝑉̃, 𝑠) ∈ 𝛦. We
claim that 𝑉̃ = 𝑈. Otherwise, take 𝑥 ∈ 𝑈 ∖ 𝑉̃. Since ℳ𝑥 → 𝒩𝑥 is surjective, there exists a section 𝑠̄
on a neighborhood 𝑊 of 𝑥 such that 𝑔̃(𝑠̄) = 𝑡|𝑊. Then

𝑔̃(𝑠|𝑉̃∩𝑊 − 𝑠̄|𝑉̃∩𝑊) = 0,
i.e.

𝑠|𝑉̃∩𝑊 − 𝑠̄|𝑉̃∩𝑊 ∈ ker 𝑔̃ = im𝑓.
Suppose

𝑠|𝑉̃∩𝑊 − 𝑠̄|𝑉̃∩𝑊 = 𝑓(𝑢)
for some 𝑢 ∈ ℒ(𝑉̃ ∩𝑊). Since ℒ is flasque, we can extend 𝑢 to a section 𝑢̃ ∈ ℒ(𝑊). Then 𝑠 ∈ ℳ(𝑉̃)
and 𝑠̄ + 𝑓(𝑢̃) ∈ ℳ(𝑊) agree on 𝑉̃ ∩ 𝑊, which induces a section 𝑠′ ∈ ℳ(𝑉̃ ∪ 𝑊) such that 𝑠′|𝑉̃ = 𝑠.
This contradicts the maximality of (𝑉̃, 𝑠). Thus we have 𝑉̃ = 𝑈, and hence 𝑔̃(𝑠) = 𝑡.

Remark The section 𝑠 is usually called a lifting of 𝑡 to ℳ.

Corollary 3.4 Suppose 𝛸 is a topological space and
0 → ℒ → ℳ →𝒩 → 0

is an exact sequence of sheaves of abelian groups on 𝛸. If ℒ and ℳ are flasque, then 𝒩 is also
flasque.

Proof. For each open set 𝑈 ⊂ 𝛸, we have the following commutative diagram with exact rows:

0 ℒ(𝛸) ℳ(𝛸) 𝒩(𝛸) 0

0 ℒ(𝑈) ℳ(𝑈) 𝒩(𝑈) 0
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In particular, Since ℳ(𝛸) → ℳ(𝑈) and ℳ(𝑈) → 𝒩(𝑈) are surjective, their composition ℳ(𝛸) →
𝒩(𝑈) is also surjective. The surjectivity of 𝒩(𝛸) → 𝒩(𝑈) then follows.

Theorem 3.5 Suppose
0 → ℳ0 →ℳ1 →ℳ2 → ⋯

is an exact sequence of flasque sheaves of abelian groups on a topological space 𝛸. Then for each
family Φ of support on 𝛸, the sequence

0 → ΓΦ(ℳ0) → ΓΦ(ℳ1) → ΓΦ(ℳ2) → ⋯

of abelian groups is exact.

Proof. Let
𝒵𝑝 = ker(ℳ𝑝 →ℳ𝑝+1) = im(ℳ𝑝−1 →ℳ𝑝)

for each 𝑝 ≥ 0. Since we have the exact sequence

0 → 𝒵𝑝 →ℳ𝑝 →ℳ𝑝+1

and ΓΦ is left exact, the sequence

0 → ΓΦ(𝒵𝑝) → ΓΦ(ℳ𝑝) → ΓΦ(ℳ𝑝+1)

is exact. Thus it suffices to show that

0 → ΓΦ(𝒵𝑝) → ΓΦ(ℳ𝑝) → ΓΦ(𝒵𝑝+1) → 0

is exact for each 𝑝 ≥ 0. We consider the exact sequence

0 → 𝒵𝑝 →ℳ𝑝 → 𝒵𝑝+1 → 0.

As ΓΦ is left exact, we only need to show that ΓΦ(ℳ𝑝) → ΓΦ(𝒵𝑝+1) is surjective. Since ℳ𝑝 is flasque,
the flasque property of 𝒵𝑝 implies the flasque property of 𝒵𝑝+1. As long as 𝒵0 = 0 is flasque, the
induction on 𝑝 shows that each 𝒵𝑝 is flasque. Thus Γ(ℳ𝑝) → Γ(𝒵𝑝+1) is surjective. Now take any
𝑡 ∈ ΓΦ(𝒵𝑝+1), with supp(𝑡) = 𝑆 ∈ Φ. We can lift 𝑡 to a section 𝑠 ∈ Γ(ℳ𝑝), whose support is not
necessarily in Φ. However, 𝑠|𝛸∖𝑆 maps to zero in 𝒵𝑝+1, implying that 𝑠|𝛸∖𝑆 is a section of 𝒵𝑝. Since
𝒵𝑝 is flasque, we can extend 𝑠|𝛸∖𝑆 to a section 𝑠′ ∈ Γ(𝒵𝑝). Then 𝑠 − 𝑠′ is a section of ℳ𝑝 with support
contained in 𝑆, and hence

𝑠 − 𝑠′ ∈ ΓΦ(ℳ𝑝).
It is clear that 𝑠 − 𝑠′ is a lifting of 𝑡 in ΓΦ(ℳ𝑝).

3.2 Paracompactified family and soft sheaves
A topological space 𝛸 is called paracompact if every open cover of 𝛸 has a locally finite open re-
finement. A closed subspace of a paracompact space is also paracompact. A paracompact Hausdorff
space is normal.

Lemma 3.6 Suppose 𝛸 is a paracompact Hausdorff space. If {𝑈𝑖}𝑖∈𝛪 is an open cover of 𝛸, then
there exists a locally finite open refinement {𝑉𝑖}𝑖∈𝛪 such that 𝑉𝑖 ⊂ 𝑈𝑖 for each 𝑖 ∈ 𝛪.

Lemma 3.7 Suppose 𝛸 is a normal space. If {𝑈𝑖}𝑖∈𝛪 is a locally finite open cover of 𝛸, then there
exists another locally finite open cover {𝑉𝑖}𝑖∈𝛪 such that 𝑉𝑖 ⊂ 𝑈𝑖 for each 𝑖 ∈ 𝛪.
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Corollary 3.8 Suppose 𝛸 is a paracompact Hausdorff space. Then each open cover {𝑈𝑖}𝑖∈𝛪 of 𝛸
has a locally finite open refinement {𝑉𝑖}𝑖∈𝛪 such that 𝑉𝑖 ⊂ 𝑈𝑖 for each 𝑖 ∈ 𝛪.

Definition 3.2 (paracompactified family) Suppose 𝛸 is a topological space. A paracompactified
family Φ on 𝛸 is a nonempty family of closed subsets of 𝛸 such that:

1. each 𝑆 ∈ Φ is paracompact and Hausdorff;
2. if 𝑆1, ⋯ , 𝑆𝑛 ∈ Φ, then 𝑆1 ∪ ⋯ ∪ 𝑆𝑛 ∈ Φ;
3. if 𝑆 ∈ Φ and 𝑆′ ⊂ 𝑆 is a closed subset, then 𝑆′ ∈ Φ;
4. each 𝑆 ∈ Φ has a neighborhood 𝑈 such that 𝑈 ∈ Φ.

If Φ is a family of support on 𝛸 and 𝑌 is a subspace of 𝑌, then define Φ|𝑌 to be the family of
subsets 𝑆 ∈ Φ such that 𝑆 ⊂ 𝑌. If 𝑌 is a closed subset of 𝛸, then

Φ|𝑌 = {𝑆 ∩ 𝑌 ∣ 𝑆 ∈ Φ}.
If Φ is paracompactified and 𝑌 = 𝑈∩𝐹 with 𝑈 open and 𝐹 closed in 𝛸, then we can verify that Φ|𝑌
is a paracompactified family on 𝑌.

Suppose ℱ is a sheaf on a topological space 𝛸. Then we can actually define sections of ℱ on
any subset 𝑌 of 𝛸 to be continuous maps 𝑠 ∶ 𝑌 → 𝛦 such that 𝑝 ∘ 𝑠 is the identity map on 𝑌, where
(𝛦, 𝑝) is the etale space of ℱ. The restriction morphisms are defined in the natural way.

Theorem 3.9 Suppose ℱ is a sheaf on a topological space 𝛸 and {𝑌𝑖}𝑖∈𝛪 is a locally finite closed
cover of 𝛸. If 𝑠𝑖 ∈ ℱ(𝑌𝑖) are sections such that

𝑠𝑖|𝑌𝑖∩𝑌𝑗 = 𝑠𝑗|𝑌𝑖∩𝑌𝑗 , 𝑖, 𝑗 ∈ 𝛪,

then there exists a section 𝑠 ∈ ℱ(𝛸) such that 𝑠|𝑌𝑖 = 𝑠𝑖 for each 𝑖 ∈ 𝛪.

Proof. Suppose (𝛦, 𝑝) is the etale space of ℱ. It is direct that there exists a map 𝑠 ∶ 𝛸 → 𝛦 such
that 𝑝 ∘ 𝑠 is identity on 𝛸 and 𝑠|𝑌𝑖 = 𝑠𝑖 for each 𝑖 ∈ 𝛪. It remains to show that 𝑠 is continuous. Fix
a point 𝑥 ∈ 𝛸. Since {𝑌𝑖}𝑖∈𝛪 is locally finite, there exists a neighborhood 𝑈 of 𝑥 such that 𝑈 ∩ 𝑌𝑖 is
nonempty for only finitely many 𝑖1, ⋯ , 𝑖𝑛 ∈ 𝛪. By shrinking 𝑈 if necessary, we may assume that 𝑥 is
contained in each 𝑌𝑖𝑘 , and that there exists a section 𝑡 of ℱ on 𝑈 such that

𝑡(𝑥) = 𝑠(𝑥) = 𝑠𝑖1(𝑥) = ⋯ = 𝑠𝑖𝑛(𝑥).
For each 1 ≤ 𝑘 ≤ 𝑛, there exists a neighborhood 𝑈𝑘 of 𝑥 such that 𝑡 and 𝑠𝑖𝑘 agree on 𝑈𝑘 ∩ 𝑌𝑖𝑘 . Let
𝑈′ = 𝑈1 ∩ ⋯𝑈𝑛. Then 𝑡 agrees with 𝑠 on each 𝑈′ ∩ 𝑌𝑖𝑘 , and hence on 𝑈′. The continuity of 𝑠 at 𝑥
follows.

Theorem 3.10 Suppose ℱ is a sheaf on a topological space 𝛸, 𝑆 is a subset of 𝛸 and 𝑠 is a section
of ℱ on 𝑆. If 𝑆 has a fundamental system of neighborhoods consisting of paracompact Hausdorff
subsets in 𝛸, then 𝑠 can be extended to a neighborhood of 𝑆 in 𝛸.

Proof. Try to use Theorem 3.9 to glue the sections.

Corollary 3.11 Suppose 𝛸 is a topological space, ℱ is a sheaf on 𝛸 and 𝑆 is a subset of 𝛸 with a
fundamental system of neighborhoods consisting of paracompact Hausdorff subsets in 𝛸. Then we
have

ℱ(𝑆) = lim−−→ℱ(𝑈),
where the inductive limit is taken over open neighborhoods 𝑈 of 𝑆 in 𝛸.
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It follows from the above corollary that if 𝛸 is a paracompact Hausdorff space and ℱ is a flasque
sheaf on 𝛸, then each section of ℱ on a closed subset of 𝛸 can be extended to the whole space 𝛸.

Definition 3.3 (soft sheaf) A sheaf ℱ on a topological space 𝛸 is called soft if for each closed
subset 𝑆 of 𝛸, each section of ℱ on 𝑆 can be extended to 𝛸.

It is direct that the restriction of a soft sheaf to a closed subset is also soft.

Theorem 3.12 Suppose ℱ is a sheaf on a paracompact Hausdorff space 𝛸. Suppose that for each
𝑥 ∈ 𝛸, there exists a neighborhood 𝑈 of 𝑥 such that each section of ℱ on a subset of 𝑈 closed in 𝛸
can extended to 𝑈. Then ℱ is soft.

Proof. Suppose 𝑠 is a section of ℱ on a closed subset 𝑆 of 𝛸. Since 𝛸 is paracompact Hausdorff, we
can take a locally finite open cover {𝑈𝑖}𝑖∈𝛪 of 𝛸 such that each 𝑈𝑖 satisfies the extention property
stated in the theorem. Then there exists another locally finite open cover {𝑉𝑖}𝑖∈𝛪 of 𝛸 such that

𝐹𝑖 ∶= 𝑉𝑖 ⊂ 𝑈𝑖
for each 𝑖 ∈ 𝛪. For each 𝐽 ⊂ 𝛪, define

𝐹𝐽 = ⋃
𝑖∈𝐽

𝐹𝑖.

Now consider the poset

𝛦 = {(𝐽, 𝑡) ∣ 𝐽 ⊂ 𝛪, and 𝑡 is a section of ℱ on 𝐹𝐽 such that 𝑡|𝑆∩𝐹𝐽 = 𝑠|𝑆∩𝐹𝐽},

with the partial order given by

(𝐽, 𝑡) ≤ (𝐽′, 𝑡′) ⟺ 𝐽 ⊂ 𝐽′, and 𝑡 = 𝑡′|𝐹𝐽 .

The extension property on each 𝑈𝑖 implies that 𝛦 is nonempty, and Theorem 3.9 shows that 𝛦
satisfies the condition of Zorn’s lemma. Thus we can find a maximal element (𝐽, 𝑡) ∈ 𝛦. We claim
that 𝐽 = 𝛪. Otherwise there exists 𝑖 ∈ 𝛪 ∖ 𝐽. Let 𝐽′ = 𝐽 ∪ {𝑖}. Noting that 𝑠|𝑆∩𝐹𝑖 is a section of ℱ on
𝑆 ∩ 𝐹𝑖, which is a subset of 𝑈𝑖 closed in 𝛸, we can extend this to a section 𝑠′ of ℱ on 𝐹𝑖 by the choice
of 𝑈𝑖. Theorem 3.9 then implies that there exists a section 𝑡′ on 𝐹𝐽′ agreeing with 𝑡 on 𝐹𝐽 and with
𝑠 on 𝑆 ∩ 𝐹𝐽′ . This contradicts the maximality of (𝐽, 𝑡). Thus we have 𝐽 = 𝛪, and hence 𝑡 is a section
of ℱ on 𝛸 such that 𝑡|𝑆 = 𝑠.

Corollary 3.13 Suppose 𝛸 is a paracompact Hausdorff space and {ℱ𝑖}𝑖∈𝛪 is a locally finite family
of sheaves of abelian groups on 𝛸. If each ℱ𝑖 is soft, then their direct sum is also soft.

Proof. The statement is trivial for finite 𝛪. We then use the local finiteness and Theorem 3.12 to
deal with a general 𝛪.

Definition 3.4 (Φ-soft sheaf) Suppose 𝛸 is a topological space and Φ is a paracompactified family
on 𝛸. A sheaf ℱ on 𝛸 is called Φ-soft if for each 𝑆 ∈ Φ, ℱ|𝑆 is soft, i.e., for each 𝑆′, 𝑆 ∈ Φ with
𝑆′ ⊂ 𝑆, the restriction morphism ℱ(𝑆) → ℱ(𝑆′) is surjective.

Theorem 3.14 Suppose 𝛸 is a paracompact Hausdorff space, Φ is a paracompactified family on
𝛸, and ℱ is a sheaf of abelian groups on 𝛸. Then ℱ is Φ-soft if and only if for each 𝑆 ∈ Φ, the
morphism ΓΦ(ℱ) → ℱ(𝑆) is surjective.
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Proof. If the corresponding morphism is surjective for each 𝑆 ∈ Φ, then it is direct that ℱ is Φ-soft.
Conversely, suppose ℱ is Φ-soft. For each 𝑆 ∈ Φ, we can find a neighborhood 𝑈 of 𝑆 such that
𝑈 ∈ Φ. There is a section on 𝑆 ∪ (𝑈 ∖ 𝑈) given by 𝑠 on 𝑆 and 0 on 𝑈 ∖ 𝑈. By the Φ-soft property,
we can extend this to a section 𝑠 on 𝑈. Taking zero in 𝛸∖𝑈, 𝑠 then extends to the whole space 𝛸.
It can be seen that the extension belongs to ΓΦ(ℱ).

Theorem 3.15 Suppose 𝛸 is topological space, Φ is a paracompactified family on 𝛸, and

0 → ℒ → ℳ →𝒩 → 0

is an exact sequence of sheaves of abelian groups on 𝛸. If ℒ is Φ-soft, then

0 → ΓΦ(ℒ) → ΓΦ(ℳ) → ΓΦ(𝒩) → 0

is an exact sequence of abelian groups.

Proof. First suppose 𝛸 is paracompact Hausdorff and Φ consists of all closed subsets of 𝛸. Using
arguments similar to the proofs of Theorem 3.3 and Theorem 3.12, we see that each section of 𝒩 on
𝛸 can be lifted to a section of ℳ. For a general 𝛸 and Φ, just consider the support of the section
needed to be lifted.

Corollary 3.16 Suppose 𝛸 is a paracompact Hausdorff space and

0 → ℒ → ℳ →𝒩 → 0

is an exact sequence of sheaves of abelian groups on 𝛸. If ℒ is soft, then the sequence

0 → ℒ(𝛢) → ℳ(𝛢) → 𝒩(𝛢) → 0

is exact for each closed subset 𝛢 of 𝛸.

Analogous to the cases of flasque sheaves, we have the follwing theorems.

Theorem 3.17 Suppose 𝛸 is a topoogical space, Φ is a paracompactified family on 𝛸, and

0 → ℒ → ℳ →𝒩 → 0

is an exact sequence of sheaves of abelian groups on 𝛸. If ℒ and ℳ are Φ-soft, then 𝒩 is also
Φ-soft.

Theorem 3.18 Suppose 𝛸 is a topological space, Φ is a paracompactified family on 𝛸, and

0 → ℳ0 →ℳ1 →ℳ2 → ⋯

is an exact sequence of Φ-soft sheaves of abelian groups on 𝛸. Then the sequence

0 → ΓΦ(ℳ0) → ΓΦ(ℳ1) → ΓΦ(ℳ2) → ⋯

is exact.

A useful result of soft sheaves is the following theorem.

Theorem 3.19 Suppose 𝛸 is a topological space, Φ is a paracompactified family on 𝛸, and 𝒜 is
a sheaf of rings with identity on 𝛸. If 𝒜 is Φ-soft, then each 𝒜-module ℳ is also Φ-soft.
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Proof. Suppose 𝑠 is a section of ℳ on a closed subset 𝑆 ∈ Φ of 𝛸. There exists a neighborhood 𝑈
of 𝑆 such that 𝑈 ∈ Φ. Since 𝒜 is Φ-soft, we can take a section 𝑢 of 𝒜 on 𝑈 such that 𝑢 takes the
value 1 on 𝑆 and 0 on 𝑈 ∖ 𝑈. Taking zero in 𝛸 ∖ 𝑈, we can extend the section

𝑥 ↦ 𝑢(𝑥)𝑠(𝑥)

of ℳ on 𝑈 to the whole space 𝛸.

4 Sheaf cohomology
A sheaf is always a sheaf of abelian groups without stated in this section.

4.1 Cohomology sheaf of a differential sheaf
Definition 4.1 (graded sheaf) Suppose 𝛸 is a topological space. A graded sheaf on 𝛸 is a
sequence ℱ∗ = {ℱ𝑛}𝑛∈ℤ of sheaves on 𝛸, where ℱ𝑛 is called the component of degree 𝑛 of ℱ∗.

Suppose 𝛵 is a functor from 𝖲𝗁(𝛸, 𝖠𝖻) to 𝖠𝖻 (or generally any abelian category), denote by 𝛵(ℱ∗)
the graded abelian group {𝛵(ℱ𝑛)}𝑛∈ℤ. It is worth noting that 𝛵(ℱ∗) is not necessarily identified
canonically with 𝛵(⨁ℱ𝑛).

For two graded sheaf ℱ∗ and 𝒢∗ on 𝛸, a homomorphism of degree 𝑟 from ℱ∗ to 𝒢∗ is a
sequence 𝑓 = {𝑓𝑛}𝑛∈ℤ of morphisms 𝑓𝑛 ∶ ℱ𝑛 → 𝒢𝑛+𝑟. When 𝑟 = 0, we simply call it a hoomorphism
from ℱ∗ to 𝒢∗. It can be verified that the graded sheaves on 𝛸, together with the homomorphisms,
form an abelian category.

Definition 4.2 (differential sheaf) A differential sheaf on 𝛸 is a graded sheaf ℱ∗ together with
a homomorphism 𝑑 ∶ ℱ∗ → ℱ∗ of degree 𝑟, satisfying 𝑑2 = 0. We are mostly concerned with the case
𝑟 = 1.

A homomorphism of differential sheaves is a homomorphism of graded sheaves commuting with
the differentials. We can also verify that the differential sheaves on 𝛸 also form an abelian category.

Suppose ℱ∗ is a differential sheaf on 𝛸. Define that

𝒵𝑛(ℱ∗) = ker(ℱ𝑛 𝑑−→ ℱ𝑛+1), ℬ𝑛(ℱ∗) = im(ℱ𝑛−1 𝑑−→ ℱ𝑛), ℋ𝑛(ℱ∗) = 𝒵𝑛(ℱ∗)/ℬ𝑛(ℱ∗).

The sheaf ℋ𝑛(ℱ∗) is called the derived sheaf (of degree 𝑛) of ℱ∗.

It is noticeable that the concept of differential sheaves and derived sheaves are analogous to
cochain complexes and homology groups. Suppose 𝛵 is an additive functor from 𝖲𝗁(𝛸, 𝖠𝖻) to
𝖠𝖻. Then for each differential sheaf ℱ∗, the graded group 𝛵(ℱ∗), together with the differential
𝛵(𝑑) ∶ 𝛵(ℱ𝑛) → 𝛵(ℱ𝑛+1), is a cochain complex. If 𝛵 is left exact, then consider the exact sequence

0 → 𝒵𝑛 → ℱ𝑛 𝑑−→ ℱ𝑛+1,

which yields the exact sequence

0 → 𝛵(𝒵𝑛) → 𝛵(ℱ𝑛) → 𝛵(ℱ𝑛+1).

We then identity 𝛵(𝒵𝑛) with 𝛧𝑛(𝛵(ℱ∗)) in a canonical way. If we further have 𝛵 is exact, then using
the exact sequences

0 → 𝒵𝑛 → ℱ𝑛 → ℬ𝑛+1 → 0
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and
0 → ℬ𝑛 → 𝒵𝑛 →ℋ𝑛 → 0,

we obtain a canonical isomorphism

𝛨𝑛(𝛵(ℱ∗)) = 𝛵(ℋ𝑛(ℱ∗)), 𝑛 ∈ ℤ.

For instance, for each 𝑥 ∈ 𝛸, we have the canonical isomorphism

𝛨𝑛(ℱ∗
𝑥 ) = (ℋ𝑛(ℱ∗))𝑥, 𝑛 ∈ ℤ.

An equivalent definition of the derived sheaves of a differential sheaf ℱ is as follows. We can see
that the sheaves 𝒵𝑛 and ℬ𝑛 are generated by the presheaves

𝑈 ↦ 𝛧𝑛(ℱ∗(𝑈)), 𝑈 ↦ 𝛣𝑛(ℱ∗(𝑈)),

respectively. Then the derived sheaf ℋ𝑛(ℱ∗) of degree 𝑛 is generated by the presheaf

𝑈 ↦ 𝛨𝑛(ℱ∗(𝑈)).

4.2 Resolution
Now we construct a differential sheaf from a sheaf to define the cohomology of sheaves.

Definition 4.3 (resolution) Suppose 𝛸 is a topological space and 𝒜 is a sheaf on 𝛸. A (cohomo-
logical) resolution is an exact sequence of sheaves

0 → 𝒜 𝑗−→ ℱ0 𝑑−→ ℱ1 𝑑−→ ℱ2 → ⋯ .

The associated differential sheaf of resolution is ℱ∗ = {ℱ𝑛}𝑛∈ℤ, with ℱ𝑛 = 0 for 𝑛 < 0. We also call
ℱ∗ a resolution of 𝒜.

By definition, we see that the derived sheaf of a resolution of 𝒜 is given by

ℋ0(ℱ∗) = 𝒜; ℋ𝑛(ℱ∗) = 0 for 𝑛 > 0.

If 𝛵 is an additive functor from 𝖲𝗁(𝛸, 𝖠𝖻) to 𝖠𝖻, then 𝛵(ℱ∗) is a cochain complex, with 𝛵(𝒜)
embedded canonically into 𝛨0(𝛵(ℱ∗)). If 𝛵 is left exact, then 𝛵(𝒜) is actually isomorphic to
𝛨0(𝛵(ℱ∗)); and if 𝛵 is further exact, then 𝛵(ℱ∗) is a resolution of 𝛵(𝒜).

Suppose 𝒜 and ℬ are two sheaves on 𝛸 with resolutions ℱ∗ and 𝒢∗, respectively. Suppose
𝑓 ∶ 𝒜 → ℬ is a morphism of sheaves. Then a homomorphism 𝑔 ∶ ℱ∗ → 𝒢∗ of differential sheaves is
said to be compatible with 𝑓 if the following diagram commutes:

𝒜 ℱ0

ℬ 𝒢0

𝑓 𝑔

For a sheaf 𝒜 on 𝛸, we can constuct a resolution 𝒞∗(𝛸;𝒜) of 𝒜 in a canonical way called the
Godement resolution. First define 𝒞0(𝛸;𝒜) to be the sheaf given by

𝑈 ↦ {𝑠 ∶ 𝑈 → 𝛦 ∣ 𝑝(𝑠(𝑥)) = 𝑥 for all 𝑥 ∈ 𝑈},
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where (𝛦, 𝑝) is the etale space of 𝒜 and the sections are not necessarily continuous. It is clear that
𝒞0(𝛸;𝒜) is a flasque sheaf of abelian groups on 𝛸, together with a canonical embedding

𝑗 ∶ 𝒜 → 𝒞0(𝛸;𝒜).

Next we define
𝒵1(𝛸;𝒜) = 𝒞0(𝛸;𝒜)/𝒜,

and then
𝒞1(𝛸;𝒜) = 𝒞0(𝛸; 𝒵1(𝛸;𝒜)).

This yields another embedding
𝒵1(𝛸;𝒜) → 𝒞1(𝛸;𝒜).

For a general 𝑛 ≥ 0, suppose we have defined the sheaves 𝒵𝑛(𝛸;𝒜) and 𝒞𝑛(𝛸;𝒜), with the former
embedded in the latter, then we can define

𝒵𝑛+1(𝛸;𝒜) = 𝒞𝑛(𝛸;𝒜)/𝒵𝑛(𝛸;𝒜), 𝒞𝑛+1(𝛸;𝒜) = 𝒞0(𝛸; 𝒵𝑛+1(𝛸;𝒜)).

This gives us the embedding
𝒵𝑛+1(𝛸;𝒜) → 𝒞𝑛+1(𝛸;𝒜).

We can see that the sheaves 𝒞𝑛(𝛸;𝒜), 𝑛 ≥ 0 are all flasque.
The differential needs to be defined as well. It is quite direct to define

𝑑 ∶ 𝒞𝑛(𝛸;𝒜) → 𝒞𝑛+1(𝛸;𝒜)

to be the composition

𝒞𝑛(𝛸;𝒜) → 𝒞𝑛(𝛸;𝒜)/𝒵𝑛(𝛸;𝒜) = 𝒵𝑛+1(𝛸;𝒜) → 𝒞𝑛+1(𝛸;𝒜).

This verifies that 𝑑 is a differential, and that the sequence

0 → 𝒜 𝑗−→ 𝒞0(𝛸;𝒜) 𝑑−→ 𝒞1(𝛸;𝒜) 𝑑−→ ⋯

is exact. Hence 𝒞∗(𝛸;𝒜) is a resolution of 𝒜 by flasque sheaves, in other words, a flasque resolution
of 𝒜.

Let
𝐶∗(𝛸;𝒜) = Γ(𝒞∗(𝛸;𝒜)), 𝐶∗

Φ(𝛸;𝒜) = ΓΦ(𝒞∗(𝛸;𝒜)),
where Φ is a family of support on 𝛸.

Theorem 4.1 Suppose 𝛸 is a topological space, and Φ is a family of support on 𝛸. Then the
assignments

𝒜 ↦ 𝒞∗(𝛸;𝒜), 𝒜 ↦ 𝐶∗
Φ(𝛸;𝒜)

give exact additive functors from the category of sheaves to the category of differential sheaves and
the cochain complexes, respectively. In particular, the functor given by

𝒜 ↦ 𝐶∗(𝛸;𝒜)

is exact.
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Proof. Consider the exact sequence of sheaves
0 → 𝒜 → ℬ → 𝒞 → 0.

For each open set 𝑈 ⊂ 𝛸, we have the exact sequence
0 → ∏

𝑥∈𝑈
𝒜𝑥 → ∏

𝑥∈𝑈
ℬ𝑥 → ∏

𝑥∈𝑈
𝒞𝑥 → 0,

which implies the exactness
0 → 𝒞0(𝛸;𝒜) → 𝒞0(𝛸;ℬ) → 𝒞0(𝛸; 𝒞) → 0.

Noting that we have the commutative diagram with exact rows

0 𝒜 ℬ 𝒞 0

0 𝒞0(𝛸;𝒜) 𝒞0(𝛸;ℬ) 𝒞0(𝛸; 𝒞) 0

and that the morphism 𝒞 → 𝒞0(𝛸; 𝒞) is injective, the snake lemma yields the exact sequence
0 → 𝒵1(𝛸;𝒜) → 𝒵1(𝛸;ℬ) → 𝒵1(𝛸; 𝒞) → 0.

Doing this inductively, we obtain the exactness of the functor 𝒞∗(𝛸; −). Theorem 3.5 then suggests
that the functor 𝐶∗

Φ(𝛸; −) is also exact.

4.3 Cohomology groups of a sheaf
Definition 4.4 (cohomology of a sheaf) Suppose 𝛸 is a topological space, Φ is a family of support
on 𝛸 and 𝒜 is a sheaf on 𝛸. The cohomology group (of degree 𝑛) of 𝒜 with respect to Φ is
defined to be

𝛨𝑛
Φ(𝛸;𝒜) = 𝛨𝑛(𝐶∗

Φ(𝛸;𝒜)) = 𝛨𝑛(ΓΦ(𝒞∗(𝛸;𝒜))).
In particular, when Φ consists of all closed subsets of 𝛸, let

𝛨𝑛(𝛸;𝒜) = 𝛨𝑛(𝐶∗(𝛸;𝒜)) = 𝛨𝑛(Γ(𝒞∗(𝛸;𝒜))).

For a morphism 𝑓 ∶ 𝒜 → ℬ, a homomorphism of groups
𝑓∗ ∶ 𝛨𝑛

Φ(𝛸;𝒜) → 𝛨𝑛
Φ(𝛸;ℬ)

is induced for each 𝑛 ≥ 0. We then see that 𝛨𝑛
Φ(𝛸; −) is a functor for each 𝑛.

Proposition 4.2 Suppose 𝛸 is a topological space and Φ is a family of support on 𝛸. Then the
functors

ΓΦ ∶ 𝖲𝗁(𝛸, 𝖠𝖻) → 𝖠𝖻, 𝛨0
Φ(𝛸, −) ∶ 𝖲𝗁(𝛸, 𝖠𝖻) → 𝖠𝖻

are naturally isomorphic.

Proof. For a sheaf 𝒜, consider the exact sequence
0 → 𝒜 → 𝒞0(𝛸;𝒜) → 𝒞1(𝛸;𝒜).

Since ΓΦ is left exact, we have another exact sequence
0 → ΓΦ(𝒜) → 𝐶0

Φ(𝛸;𝒜) → 𝐶1
Φ(𝛸;𝒜),

which implies the desired natural isomorphism.
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Theorem 4.3 Suppose 𝛸 is a topological space, Φ is a family of support on 𝛸, and

0 → 𝒜 𝑓−→ ℬ 𝑔−→ 𝒞 → 0

is an exact sequence of sheaves on 𝛸. Then we have the long exact sequence

0 → ΓΦ(𝒜)
𝑓∗−−→ ΓΦ(ℬ)

𝑔∗−→ ΓΦ(𝒞)
𝛿−→ 𝛨1

Φ(𝛸;𝒜)
𝑓∗−−→ 𝛨1

Φ(𝛸;ℬ)
𝑔∗−→ 𝛨1

Φ(𝛸; 𝒞) → ⋯

⋯ → 𝛨𝑛−1
Φ (𝛸; 𝒞) 𝛿−→ 𝛨𝑛

Φ(𝛸;𝒜)
𝑓∗−−→ 𝛨𝑛

Φ(𝛸;ℬ)
𝑔∗−→ 𝛨𝑛

Φ(𝛸; 𝒞)
𝛿−→ 𝛨𝑛+1

Φ (𝛸;𝒜) → ⋯ .

Moreover, the connecting homorphism

𝛿 ∶ 𝛨𝑛
Φ(𝛸; 𝒞) → 𝛨𝑛+1

Φ (𝛸;𝒜)

is natural, in the sense that if we have the commutative diagram with exact rows

0 𝒜 ℬ 𝒞 0

0 𝒜′ ℬ′ 𝒞′ 0

then the following diagram commutes

𝛨𝑛
Φ(𝛸; 𝒞) 𝛨𝑛+1

Φ (𝛸;𝒜)

𝛨𝑛
Φ(𝛸; 𝒞′) 𝛨𝑛+1

Φ (𝛸;𝒜′)

𝛿

𝛿′

Proof. Just consider the exact sequence of cochain complexes

0 → 𝐶∗
Φ(𝛸;𝒜) → 𝐶∗

Φ(𝛸;ℬ) → 𝐶∗
Φ(𝛸; 𝒞) → 0.

Corollary 4.4 Suppose 𝛸 is a topological space, Φ is a family of support on 𝛸, and

0 → 𝒜 → ℬ → 𝒞 → 0

is an exact sequence of sheaves on 𝛸. If 𝛨1
Φ(𝛸;𝒜) = 0, then the correspondence sequence

0 → ΓΦ(𝛸;𝒜) → ΓΦ(𝛸;ℬ) → ΓΦ(𝛸; 𝒞) → 0

is exact.

Theorem 4.5 Suppose 𝛸 is a topological space, Φ is a family of support on 𝛸, and 𝒜 is a sheaf
on 𝛸. Then

𝛨𝑛
Φ(𝛸;𝒜) = 0, 𝑛 ≥ 1

if one of the followings verifies:
1. 𝒜 is flasque;
2. Φ is paracompactified and 𝒜 is Φ-soft.
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Proof. Consider the exact sequence

0 → 𝒜 → 𝒞0(𝛸;𝒜) → 𝒞1(𝛸;𝒜) → ⋯

Using theorem 3.5 if the first condition verifies and theorem 3.18 if the second, we see that the
sequence

0 → ΓΦ(𝒜) → 𝐶0
Φ(𝛸;𝒜) → 𝐶1

Φ(𝛸;𝒜) → ⋯
is exact, implying that the higher cohomology groups are all trivial.

As the Godement resolution is not always easy to compute, we try to determine the cohomology
groups using other resolutions.

Suppose 𝛸 is a topological space, Φ is a family of support on 𝛸 and ℱ∗ is a differential sheaf on
𝛸. Consider the bigraded group

𝛫 = 𝛫(ℱ∗) = {𝐶𝑝
Φ(𝛸;ℱ

𝑞)} .

We can make this into a double complex by taking differentials

𝑑′ ∶ 𝐶𝑝
Φ(𝛸;ℱ

𝑞) → 𝐶𝑝+1
Φ (𝛸;ℱ𝑞)

given by the Godement resolution and

𝑑″ ∶ 𝐶𝑝
Φ(𝛸;ℱ

𝑞) → 𝐶𝑝
Φ(𝛸;ℱ

𝑞+1)

induced from the differential of ℱ∗, up to (−1)𝑝, which satisfies

𝑑′𝑑″ + 𝑑″𝑑′ = 0.

Then 𝑑 = 𝑑′ + 𝑑″ defines a differential on the total complex 𝛫tot, which is given by

𝛫𝑛
tot = ∑

𝑝+𝑞=𝑛
𝐶𝑝
Φ(𝛸;ℱ

𝑞).

Now consider the spectral sequences given by 𝛫:
𝛪𝛦𝑝,𝑞
2 = 𝛨𝑝

𝑑′(𝛨
𝑞
𝑑″(𝛫)),

𝛪𝛪𝛦𝑝,𝑞
2 = 𝛨𝑝

𝑑″(𝛨
𝑞
𝑑′(𝛫)).

Since 𝐶𝑝
Φ is exact, we see that

(𝛨𝑞
𝑑″(𝛫))

𝑝 = 𝛨𝑞(𝛫𝑝,∗) = 𝛨𝑞(𝐶𝑝
Φ(𝛸;ℱ

∗)) = 𝐶𝑝
Φ(𝛸;ℋ

𝑞(ℱ∗)),

and hence
𝛪𝛦𝑝,𝑞
2 = 𝛨𝑝(𝐶∗

Φ(𝛸;ℋ𝑞(ℱ∗))) = 𝛨𝑝
Φ(𝛸;ℋ

𝑞(ℱ∗)).
At the same time,

(𝛨𝑞
𝑑′(𝛫))

𝑝 = 𝛨𝑞(𝛫∗,𝑝) = 𝛨𝑞(𝐶∗
Φ(𝛸;ℱ𝑝)) = 𝛨𝑞

Φ(𝛸;ℱ
𝑝),

implying that
𝛪𝛪𝛦𝑝,𝑞

2 = 𝛨𝑝(𝛨𝑞
Φ(𝛸;ℱ

∗)).
Since 𝛫𝑝,𝑞 = 0 for 𝑝 < 0, the second filtration of 𝛫, given by

𝛪𝛪𝛫𝑝 = ∑
𝑖∈ℤ,𝑗≥𝑝

𝛫𝑖,𝑗,
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is regular, meaning that for each 𝑛 ∈ ℤ, there exists 𝑝𝑛 such that

𝛫𝑛
tot ∩ 𝛪𝛪𝛫𝑝 = 0, 𝑝 ≥ 𝑝𝑛.

Noting that
𝛪𝛪𝛦𝑝,0

2 = 𝛨𝑝(𝛨0
Φ(𝛸;ℱ∗)) = 𝛨𝑝(ΓΦ(𝛸;ℱ∗))

in a canonical way, we have the induced homomorphism

𝛨𝑝(ΓΦ(ℱ∗)) → 𝛨𝑝(𝛫∗
tot).

When 𝛪𝛪𝛦𝑝,𝑞
2 = 0 for 𝑞 > 0, then the above homomorphism is actually isomorphism. Consider the

convergence of the spectral sequence given by the first filtration, we obtain the following theorem.

Theorem 4.6 Suppose 𝛸 is a topological space, Φ is a family of support on 𝛸, and ℱ∗ is a
differential sheaf on 𝛸. Suppose the complexes 𝛨𝑞

Φ(𝛸;ℱ
∗) are exact for 𝑞 > 0, then we have the

convergence of the spectral sequence

𝛦𝑝,𝑞
2 = 𝛨𝑝

Φ(𝛸;ℋ
𝑞(ℱ∗)) ⇒ 𝛨𝑝+𝑞(ΓΦ(ℱ∗)).

Now consider a resolution of a sheaf 𝒜 on 𝛸:

0 → 𝒜 → ℱ0 → ℱ1 → ⋯ .

The corresponding double complex 𝛫(ℱ∗) then concentrates in the first quadrant. We have the
injective homomorphisms of chain complexes

𝐶∗
Φ(𝛸;𝒜) → 𝛫∗

tot ← ΓΦ(ℱ∗),

which induces homomorphisms of cohomology groups

𝛨𝑛
Φ(𝛸;𝒜) → 𝛨𝑛(𝛫∗

tot) ← 𝛨𝑛(ΓΦ(ℱ∗)).

These can be identified with the homomorphisms given by the spectral sequences
𝛪𝛦𝑛,0
2 → 𝛨𝑛(𝛫∗

tot) ← 𝛪𝛪𝛦𝑛,0
2 ,

since we can identified 𝒜 with ℋ0(ℱ∗) and ΓΦ(ℱ∗) with 𝛨0
Φ(𝛸;ℱ∗). Since ℱ∗ is a resolution of 𝒜,

we have ℋ𝑞(ℱ∗) = 0 for 𝑞 > 0, and hence
𝛪𝛦𝑝,𝑞
2 = 𝛨𝑝

Φ(𝛸;ℋ
𝑞(ℱ∗)) = 0, 𝑞 > 0.

Hence the homomorphism 𝛨𝑛
Φ(𝛸;𝒜) → 𝛨𝑛(𝛫∗

tot) is actually bĳective. We then obtain a homomor-
phism

𝛨𝑛(ΓΦ(ℱ∗)) → 𝛨𝑛
Φ(𝛸;𝒜).

Acturally, this result can be viewed as a special case for the following convergence of the spectral
sequence given by the second filtration

𝛪𝛪𝛦𝑝,𝑞
2 = 𝛨𝑝(𝛨𝑞

Φ(𝛸;ℱ
∗)) ⇒ 𝛨𝑝+𝑞

Φ (𝛸;𝒜).

Together with the convergence of the spectral sequence given by the first filtration (theorem
4.6), we obtain the following isomorphism.
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Theorem 4.7 Suppose 𝛸 is a topological space, Φ is a family of support on 𝛸, and ℱ∗ is a
resolution of a sheaf 𝒜 on 𝛸. If 𝛨𝑞

Φ(𝛸;ℱ
∗) is exact for 𝑞 > 0, then the canonical homomorphism

𝛨𝑛(ΓΦ(ℱ∗)) → 𝛨𝑛
Φ(𝛸;𝒜)

is bĳective.

Corollary 4.8 Suppose 𝛸 is a topological space, Φ is a family of support on 𝛸, and ℱ∗ is a
resolution of a sheaf 𝒜 on 𝛸. Then we have the canonical isomorphism

𝛨𝑛
Φ(𝛸;𝒜) = 𝛨𝑛(ΓΦ(ℱ∗)),

if one of the followings verifies:
1. ℱ𝑞 is flasque for each 𝑞;
2. Φ is paracompactified and ℱ𝑞 is Φ-soft for each 𝑞.

Example 4.1 Suppose 𝛭 is an 𝑛-dimensional smooth manifold. They we have the resolution of
ℝ on 𝛭 given by

0 → ℝ → Ω0 → Ω1 → ⋯ .
Suppose Φ is a paracompactified family on 𝛭. Since 𝐶∞

𝛭 is a Φ-soft sheaf of rings, theorem 3.19
implies that Ω𝑝 is Φ-soft for each 𝑝. Thus we have the isomorphism

𝛨𝑛
Φ(𝛭;ℝ) = 𝛨𝑛(ΓΦ(Ω∗)) = 𝛨𝑛

dR,Φ(𝛭).

The homomorphism from 𝛨𝑛(ΓΦ(ℱ∗)) to 𝛨𝑛
Φ(𝛸;𝒜) is actually canonical. This is what the fol-

lowing theorem means.

Theorem 4.9 Suppose 𝛸 is a topological space, Φ is a family of support on 𝛸, and ℱ∗ and 𝒢∗

are resolutions of the sheaves 𝒜 and ℬ on 𝛸, respectively. If 𝑓 ∶ 𝒜 → ℬ is a morphism of sheaf and
𝑔 ∶ ℱ∗ → 𝒢∗ is compatible with 𝑓, then the following diagram commutes:

𝛨𝑛(ΓΦ(ℱ∗)) 𝛨𝑛
Φ(𝛸;𝒜)

𝛨𝑛(ΓΦ(𝒢∗)) 𝛨𝑛
Φ(𝛸;ℬ)

𝑔∗ 𝑓∗

The homomorphism also commutes with the connecting homomorphism of a long exact sequence.

Theorem 4.10 Suppose 𝛸 is a topological space, Φ is a paracompactified family on 𝛸, and
ℱ∗, 𝒢∗, 𝒦∗ are resolutions of the sheaves 𝒜,ℬ, 𝒞 on 𝛸 respectively. If we have the commutative
diagram of exact sequences

0 𝒜 ℬ 𝒞 0

0 ℱ∗ 𝒢∗ 𝒦∗ 0

and the corresponding sequence

0 → ΓΦ(ℱ𝑞) → ΓΦ(𝒢𝑞) → ΓΦ(𝒦𝑞) → 0
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is exact for each 𝑞, then the following diagram commutes:

𝛨𝑛(ΓΦ(𝒦∗)) 𝛨𝑛
Φ(𝛸; 𝒞)

𝛨𝑛+1(ΓΦ(ℱ∗)) 𝛨𝑛+1
Φ (𝛸;𝒜)

𝛿̃ 𝛿

4.4 Characterisation of cohomology groups
An interesting thing about the cohomology groups is that they can be determined (up to a natural
isomorphism) by some of their properties.

Theorem 4.11 Suppose 𝛸 is a topological space, Φ is a family of support on 𝛸, and

𝐹𝑛 ∶ 𝖲𝗁(𝛸, 𝖠𝖻) → 𝖠𝖻, 𝑛 = 0, 1, ⋯

are functors satisfying the following properties:
1. there is a natural isomorphism

𝛼 ∶ ΓΦ → 𝐹0;

2. for each exact sequence
0 → 𝒜 𝑓−→ ℬ 𝑔−→ 𝒞 → 0

of sheaves on 𝛸, we have a natural connecting homomorphism

𝛿 ∶ 𝐹𝑛(𝒞) → 𝐹𝑛+1(𝒜)

yielding the following long exact sequence:

0 → 𝐹0(𝒜) 𝑓∗−−→ 𝐹1(ℬ) 𝑔∗−→ 𝐹2(𝒞) 𝛿−→ 𝐹1(𝛸;𝒜) → ⋯

⋯ → 𝐹𝑛−1(𝛸; 𝒞) 𝛿−→ 𝐹𝑛(𝛸;𝒜) 𝑓∗−−→ 𝐹𝑛(𝛸;ℬ) 𝑔∗−→ 𝐹𝑛(𝛸; 𝒞) 𝛿−→ 𝐹𝑛+1(𝛸;𝒜) → ⋯ ;

3. we have
𝐹𝑛(𝒜) = 0, 𝑛 ≥ 1

whenever 𝒜 is flasque.
Then there exist natural isomorphisms

𝛵𝑛 ∶ 𝛨𝑛
Φ(𝛸; −) → 𝐹𝑛

compatible with connecting homomorphisms.

Proof. First we have a natural isomorphism

𝛵0 ∶ 𝛨0
Φ(𝛸; −) → 𝐹𝑛

given by 𝛼 and the natural isomorphism from ΓΦ to 𝛨0
Φ(𝛸; −). Next we try to construct the natural

isomorphisms inductively. Consider the exact sequence of sheaves

0 → 𝒜 → 𝒞0(𝛸;𝒜) → 𝒵1(𝛸;𝒜) → 0.

22



Then we have the commutative diagram of exact sequences:

0 ΓΦ(𝒜) 𝐶0
Φ(𝛸;𝒜) ΓΦ(𝒵1(𝛸;𝒜)) 𝛨1

Φ(𝛸;𝒜) 𝛨1
Φ(𝛸; 𝒞0(𝛸;𝒜))

0 𝐹0(𝒜) 𝐹0(𝒞0(𝛸;𝒜)) 𝐹0(𝒵1(𝛸;𝒜)) 𝐹1(𝒜) 𝐹1(𝒞0(𝛸;𝒜))

The vertical arrows are given by 𝛼, and since 𝒳0(𝛸;𝒜) is flasque, it is true that

𝛨1
Φ(𝛸; 𝒞0(𝛸;𝒜)) = 𝐹1(𝒞0(𝛸;𝒜)) = 0.

Therefore there is an isomorphism

𝛵1(𝒜) ∶ 𝛨1
Φ(𝛸;𝒜) → 𝐹1(𝒜)

making the diagram commute. For a morphism 𝑓 ∶ 𝒜 → ℬ, consider the commutative diagram

0 𝒜 𝒞0Φ(𝛸;𝒜) 𝒵1(𝛸;𝒜) 0

0 ℬ 𝒞0Φ(𝛸;ℬ) 𝒵1(𝛸;ℬ) 0

which actually implies the naturality of 𝛵1. It is clear that 𝛵1 commutes with the connecting
homomorphisms. Suppose we have constructed the natural isomorphism

𝛵𝑛 ∶ 𝛨𝑛
Φ(𝛸; −) → 𝐹𝑛,

with 𝑛 ≥ 1, commuting with connecting homomorphisms. We have the commutative diagram of
exact sequences:

𝛨𝑛
Φ(𝛸; 𝒞0(𝛸;𝒜)) 𝛨𝑛

Φ(𝒵1(𝛸;𝒜)) 𝛨𝑛+1
Φ (𝛸;𝒜) 𝛨𝑛+1

Φ (𝛸; 𝒞0(𝛸;𝒜))

𝐹𝑛(𝒞0(𝛸;𝒜)) 𝐹𝑛(𝒵1(𝛸;𝒜)) 𝐹𝑛+1(𝒜) 𝐹𝑛+1(𝒞0(𝛸;𝒜))
𝛵𝑛

The flasque property of 𝒞0(𝛸;𝒜) implies that

𝛨𝑛
Φ(𝛸; 𝒞0(𝛸;𝒜)) = 𝐹𝑛(𝒞0(𝛸;𝒜)) = 𝛨𝑛+1

Φ (𝛸; 𝒞0(𝛸;𝒜)) = 𝐹𝑛+1(𝒞0(𝛸;𝒜)) = 0.

We then obtain an isomorphism

𝛵𝑛+1(𝒜) ∶ 𝛨𝑛+1
Φ (𝛸;𝒜) → 𝐹𝑛+1(𝒜).

The naturality and the commutativity with the connecting homomorphisms of 𝛵𝑛+1 are both direct
from our construction.

5 Čech cohomology
Through this section, we consider presheaves and sheaves of abelian groups on a fixed topological
space 𝛸. If 𝒜 is a presheaf, we always suppose that 𝒜(∅) = 0.
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5.1 Cohomology with respect to an open cover
Suppose 𝒜 is a presheaf on 𝛸 and 𝔘 = {𝑈𝑖}𝑖∈𝛪 is an open cover of 𝛸. For a subset 𝑠 = {𝑖0, ⋯ , 𝑖𝑝} of 𝛪,
define

𝑈𝑠 = 𝑈𝑖0⋯𝑖𝑝 = 𝑈𝑖0 ∩ ⋯ ∩ 𝑈𝑖𝑝 .
Let

𝐶𝑝(𝔘;𝒜) = ∏
𝑠={𝑖0 ,⋯,𝑖𝑝}⊂𝛪

𝑈𝑠≠∅

𝒜(𝑈𝑠)

be the group of 𝒜-valued cochains of degree 𝑝 of 𝔘. A cochain 𝛼 ∈ 𝐶𝑝(𝔘;𝒜) has the form

𝛼 = (𝛼𝑖0⋯𝑖𝑝)𝑖0 ,⋯,𝑖𝑝∈𝛪,

with
𝛼𝑖0⋯𝑖𝑝 ∈ 𝒜(𝑈𝑖0⋯𝑖𝑝).

Define the differential
𝑑 ∶ 𝐶𝑝(𝔘;𝒜) → 𝐶𝑝+1(𝔘;𝒜)

by

(𝑑𝛼)𝑖0⋯𝑖𝑝+1 =
𝑝+1
∑
𝑘=0

(−1)𝑘𝛼𝑖0⋯𝑖̂𝑘⋯𝑖𝑝+1|𝑈𝑖0⋯𝑖𝑝+1 .

This is similar to the differential of a singular cochain. We denote the cohomology group of 𝐶∗(𝔘;𝒜)
of degree 𝑛 by 𝛨𝑛(𝔘;𝒜).

For a morphism 𝑓 ∶ 𝒜 → ℬ of presheaves, we have a induced cochain homomorphism 𝐶∗(𝔘;𝒜) →
𝐶∗(𝔘; ℬ) and then a homomorphism

𝑓∗ ∶ 𝛨𝑛(𝔘;𝒜) → 𝛨𝑛(𝔘; ℬ)

for each 𝑛 ≥ 0.
Consider an open cover 𝔘 = {𝑈𝑖}𝑖∈𝛪 of 𝛸 and an open subset 𝑉 ⊂ 𝛸.Then the family of open sets

given by 𝔘 ∩ 𝑉 = {𝑈𝑖 ∩ 𝑉}𝑖∈𝛪 is an open cover of 𝑉. We take the notation that

𝐶∗(𝔘 ∩ 𝑉;𝒜) = 𝐶∗(𝔘 ∩ 𝑉;𝒜|𝑉).

For each open sets 𝑊 ⊂ 𝑉 ⊂ 𝛸, the restriction of sections induces a morphism

𝐶∗(𝔘 ∩ 𝑉;𝒜) → 𝐶∗(𝔘 ∩𝑊;𝒜).

It follows that the assignment
𝑉 ↦ 𝐶𝑛(𝔘 ∩ 𝑉;𝒜)

gives a presheaf on 𝒜, denoted by 𝒞𝑛(𝔘;𝒜). We then also obtain a differential presheaf

𝒞∗(𝔘;𝒜) = {𝒞𝑛(𝔘;𝒜)}𝑛≥0.

If 𝒜 is a sheaf, then each 𝒞𝑛(𝔘;𝒜) is a sheaf and 𝒞∗(𝔘;𝒜) is a differential sheaf. We can see that

𝐶∗(𝔘;𝒜) = Γ(𝒞∗(𝔘;𝒜)),

which inspires us to define
𝐶∗
Φ(𝔘;𝒜) = ΓΦ(𝒞∗(𝔘;𝒜)),
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where Φ is a family of support on 𝛸. The cohomology groups of 𝐶∗
Φ(𝔘;𝒜) are denoted by 𝛨𝑛

Φ(𝔘;𝒜),
with 𝑛 ≥ 0.

Note that we have a sheaf morphism

𝑗 ∶ 𝒜 → 𝒞0(𝔘;𝒜)

given by
𝑗(𝛼)𝑖 = 𝛼|𝑈𝑖∩𝑉, 𝛼 ∈ 𝒜(𝑉), 𝑖 ∈ 𝛪.

The axiom of sheaf implies that 𝑗 is injective with im(𝑗) = ker(𝑑).

Theorem 5.1 Suppose 𝛸 is a topological space and 𝔘 is an open cover of 𝛸. Then for each sheaf
𝒜 on 𝛸 the following sequence is exact

0 → 𝒜 𝑗−→ 𝒞0(𝔘;𝒜) 𝑑−→ 𝒞1(𝔘;𝒜) 𝑑−→ 𝒞2(𝔘;𝒜) → ⋯ ,

i.e., 𝒞∗(𝔘;𝒜) is a resolution of 𝒜.

Proof. We have shown the exactness at 𝒜 and 𝒞0(𝔘;𝒜), so it remains to show im(𝑑) = ker(𝑑) for
𝑛 > 0. Consider 𝑥 ∈ 𝛸 and a germ in ker(𝑑) defined by 𝛼 ∈ 𝐶𝑛(𝔘 ∩ 𝑉;𝒜), where 𝑉 is a neighborhood
of 𝑥. Since 𝔘 is an open cover, we may assume 𝑉 ⊂ 𝑈𝑘 for some index 𝑗 ∈ 𝛪. Then

𝑉 ∩ 𝑈𝑗𝑖0⋯𝑖𝑛−1 = 𝑉 ∩ 𝑈𝑖0⋯𝑖𝑛−1

for any 𝑖0, ⋯ , 𝑖𝑛−1 ∈ 𝛪. Define 𝛽 ∈ 𝐶𝑛−1(𝔘 ∩ 𝑉;𝒜) by

𝛽𝑖0⋯𝑖𝑛−1 = 𝛼𝑗𝑖0⋯𝑖𝑛−1 , 𝑖0, ⋯ , 𝑖𝑛−1 ∈ 𝛪.

Since 𝑑𝛼 = 0, we have
0 = (𝑑𝛼)𝑗𝑖0⋯𝑖𝑛 = 𝛼𝑖0⋯𝑖𝑛 −

𝑛
∑
𝑘=0

(−1)𝑘𝛼𝑗𝑖0⋯𝑖̂𝑘⋯𝑖𝑛 ,

implying that
(𝑑𝛽)𝑖0⋯𝑖𝑛 =

𝑛
∑
𝑘=0

(−1)𝑘𝛽𝑖0⋯𝑖̂𝑘⋯𝑖𝑛 =
𝑛
∑
𝑘=0

(−1)𝑘𝛼𝑗𝑖0⋯𝑖̂𝑘⋯𝑖𝑛 = 𝛼𝑖0⋯𝑖𝑛 .

It follows that 𝛼 = 𝑑𝛽 and the exactness at 𝒞𝑛(𝔘;𝒜) follows.

Corollary 5.2 Suppose 𝔘 is an open cover of a topological space 𝛸 and Φ is a family of support
on 𝛸. Then for each sheaf 𝒜 on 𝛸, we have the canonical isomorphism

𝛨0
Φ(𝔘;𝒜) = ΓΦ(𝒜) = 𝛨0

Φ(𝛸;𝒜).

Proof. Consider the exact sequence

0 → 𝒜 → 𝒞0(𝔘;𝒜) → 𝒞1(𝔘;𝒜).

Since ΓΦ is left exact, we have the exact sequence

0 → ΓΦ(𝒜) → 𝐶0
Φ(𝔘;𝒜) → 𝐶1

Φ(𝔘;𝒜).

It follows that 𝛨0
Φ(𝔘;𝒜) is isomorphic to ΓΦ(𝒜) canonically.
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Theorem 5.3 Suppose 𝔘 is an open cover of a topological space 𝛸, Φ is a family of support on
𝛸, and 𝒜 is a sheaf on 𝛸. If 𝒜 is flasque, then

𝛨𝑛
Φ(𝔘;𝒜) = 0, 𝑛 ≥ 1.

Proof. By theorem 5.1 and 3.5, it remains to verify the flasque property for each 𝒞𝑛(𝔘;𝒜), which is
direct from the definition.

Applying the results in section 4.3, we obtain a canonical homomorphism

𝛨∗
Φ(𝔘;𝒜) → 𝛨∗

Φ(𝛸;𝒜)

for each open cover 𝔘 of 𝛸, each family of support Φ and each sheaf 𝒜 on 𝛸.

5.2 Relations between the cohomology with respect to an open cover
and that of the whole space

Suppose 𝔘 is an open cover of a topological space 𝛸 and ℱ∗ = {ℱ𝑛} is a differential sheaf on 𝛸. As
shown in section 4.3, we can consider the double complex

𝛫 = 𝛫(𝔘;ℱ∗) = {𝐶𝑝(𝔘;ℱ𝑞)} ,

with the differentials

𝑑′ ∶ 𝐶𝑝(𝔘;ℱ𝑞) → 𝐶𝑝+1(𝔘;ℱ𝑞), 𝑑″ ∶ 𝐶𝑝(𝔘;ℱ𝑞) → 𝐶𝑝(𝔘;ℱ𝑞+1).

To determine the corresponding spectral sequences, note that

(𝛨𝑞
𝑑′(𝛫))

𝑝 = 𝛨𝑞(𝛫∗,𝑝) = 𝛨𝑞(𝐶∗(𝔘;ℱ𝑝)) = 𝛨𝑞(𝔘;ℱ𝑝),

and then
𝛪𝛪𝛦𝑝,𝑞

2 = 𝛨𝑝(𝛨𝑞(𝔘;ℱ∗)).
For 𝛪𝛦2, we have

(𝛨𝑞
𝑑″(𝛫))

𝑝 = 𝛨𝑞(𝛫𝑝,∗) = 𝛨𝑞(𝐶𝑝(𝔘;ℱ∗))

= 𝛨𝑞 ( ∏
𝑠={𝑖0 ,⋯,𝑖𝑝}⊂𝛪

ℱ∗(𝑈𝑠))

= ∏
𝑠={𝑖0 ,⋯,𝑖𝑝}⊂𝛪

𝛨𝑞(ℱ∗(𝑈𝑠))

= ∏
𝑠={𝑖0 ,⋯,𝑖𝑝}⊂𝛪

ℋ𝑞(ℱ∗)(𝑈𝑠)

= 𝐶𝑝(𝔘;ℋ𝑞(ℱ∗)),

implying that
𝛪𝛦𝑝,𝑞
2 = 𝛨𝑝(𝐶∗(𝔘;ℋ𝑞(ℱ∗))) = 𝛨𝑝(𝔘;ℋ𝑞(ℱ∗)).

Now suppose ℱ∗ = 𝒞∗(𝛸;𝒜) is the Godement resolution of a sheaf 𝒜. The canonical injection
𝒜 → ℱ0 then induces a canonical homomorphism of complexes

𝐶∗(𝔘;𝒜) → 𝐶∗(𝔘;ℱ0) → 𝛫∗
tot,

26



which further induces a homomorphism
𝛨𝑛(𝔘;𝒜) → 𝛨𝑛(𝛫∗

tot)
of cohomology groups. As ℱ∗ is a flasque resolution of 𝒜, we have 𝛨𝑞(𝔘;𝒜) = 0 for 𝑞 > 0 by theorem
5.3, and hence

𝛪𝛪𝛦𝑝,𝑞
2 = 𝛨𝑝(𝔘;ℋ𝑞(ℱ∗)) = 0, 𝑞 > 0.

It follows that the homomorphisms
𝛨𝑛(𝛸;𝒜) = 𝛨𝑛(Γ(ℱ∗)) = 𝛨𝑛(𝛨0(𝔘;ℱ∗)) → 𝛨𝑛(𝛫∗

tot)
are all bĳective. We then obtain natural homomorphisms

𝛨𝑛(𝔘;𝒜) → 𝛨𝑛(𝛸;𝒜).
Turning to the other spectral sequence, we find the following theorem.

Theorem 5.4 Suppose 𝔘 is an open cover of a topological space 𝛸 and 𝒜 is a sheaf on 𝛸. Then
the following convergence of the spectral sequence holds:

𝛦𝑝,𝑞
2 = 𝛨𝑝(𝔘;ℋ𝑞(𝒜)) ⇒ 𝛨𝑝+𝑞(𝛸;𝒜),

where the sheaf ℋ𝑞(𝒜) is given by
𝑈 ↦ 𝛨𝑞(𝒞∗(𝛸;𝒜)(𝑈))

for each 𝑞 ≥ 0, with 𝒞∗(𝛸;𝒜) the Godement resolution of 𝒜.

Corollary 5.5 Suppose 𝔘 = {𝑈𝑖}𝑖∈𝛪 is an open cover of a topological space 𝛸 and 𝒜 is a sheaf on
𝛸. If

𝛨𝑞(𝒞∗(𝛸;𝒜)(𝑈𝑠)) = 0, 𝑠 ⊂ 𝛪, 𝑞 > 0,
then the canonical homomorphisms

𝛨𝑛(𝔘;𝒜) → 𝛨𝑛(𝛸;𝒜)
are bĳective.

The above results can actually be generalized to 𝛨𝑛
Φ, which yields canonical homomorphisms

𝛨𝑛
Φ(𝔘;𝒜) → 𝛨𝑛

Φ(𝛸;𝒜).
It can be seen from our constructions that these homomorphisms are the same as those at the

end of section 5.1.

5.3 Čech cohomology
Suppose 𝔘 = {𝑈𝑖}𝑖∈𝛪 and 𝔙 = {𝑉𝑗}𝑗∈𝐽 are open covers of a topoological space 𝛸 such that 𝔙 is a
refinement of 𝔘, i.e., for each 𝑗 ∈ 𝐽, there is 𝑖 ∈ 𝛪, such that 𝑉𝑗 ⊂ 𝑈𝑖. Then we have a map 𝜄 ∶ 𝐽 → 𝛪
such that 𝑉𝑗 ⊂ 𝑈𝜄(𝑗) for each 𝑗. Consider a family of support Φ and a sheaf 𝒜 on 𝛸. We can define
a homomorphism of complexes

𝜄∗ ∶ 𝐶∗
Φ(𝔘;𝒜) → 𝐶∗

Φ(𝔙;𝒜)
by

(𝜄∗(𝛼))𝑗0⋯𝑗𝑛 = 𝛼𝜄(𝑗0)⋯𝜄(𝑗𝑛)|𝑉𝑗0⋯𝑗𝑛 , 𝑗0, ⋯ , 𝑗𝑛 ∈ 𝐽, 𝛼 ∈ 𝐶𝑛
Φ(𝔘;𝒜).

This further induces a homomorphisms between cohomology groups. However, since the choice of
𝜄 is not unique, the naturality of the homomorphisms need considering.
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Theorem 5.6 Suppose 𝔘 = {𝑈𝑖}𝑖∈𝛪 and 𝔙 = {𝑉𝑗}𝑗∈𝐽 are open covers of a topoological space 𝛸 such
that 𝔙 is a refinement of 𝔘, Φ is a family of support on 𝛸, and 𝒜 is a sheaf on 𝛸. If 𝜄1 and 𝜄2 are two
maps from 𝐽 to 𝛪 such that 𝑉𝑗 ⊂ 𝑈𝜄1(𝑗) and 𝑉𝑗 ⊂ 𝑈𝜄2(𝑗) for each 𝑗 ∈ 𝐽, then the induced homomorphisms

𝜄∗1, 𝜄∗2 ∶ 𝐶∗
Φ(𝔘;𝒜) → 𝐶∗

Φ(𝔙;𝒜)

are homotopic.

Proof. Define homomorphisms
𝛫 ∶ 𝐶𝑛

Φ(𝔘;𝒜) → 𝐶𝑛−1
Φ (𝔙;𝒜)

for each 𝑛 > 0 by
(𝛫𝛼)𝑗0⋯𝑗𝑛−1 =

𝑛−1
∑
𝑘=0

(−1)𝑘𝛼𝜄1(𝑗0)⋯𝜄1(𝑗𝑘)𝜄2(𝑗𝑘)⋯𝜄2(𝑗𝑛−1)|𝑉𝑗0⋯𝑗𝑛−1 .

We can verify that
𝜄∗2 − 𝜄∗1 = 𝑑𝛫 + 𝛫𝑑,

i.e., 𝜄∗1 and 𝜄∗2 are homotopic through 𝛫.
Since homotopic cochain complex homomorphisms induce the same homomorphism of cohomol-

ogy groups, we obtain a canonical homomorphism

𝛨𝑛
Φ(𝔘;𝒜) → 𝛨𝑛

Φ(𝔙;𝒜)

for each 𝑛 ≥ 0. Moreover, if 𝔚 is a refinement of 𝔙, then the following diagram commutes:

𝛨𝑛
Φ(𝔘;𝒜) 𝛨𝑛

Φ(𝔚;𝒜)

𝛨𝑛
Φ(𝔙;𝒜)

We also have the commutative diagram

𝛨𝑛
Φ(𝔘;𝒜) 𝛨𝑛

Φ(𝔙;𝒜)

𝛨𝑛
Φ(𝛸;𝒜)

Consider the collection ℭ(𝛸) of open covers of 𝛸 of the form 𝔘̃ = {𝑈̃𝑥}𝑥∈𝛸 such that 𝑥 ∈ 𝑈̃𝑥 for
each 𝑥. Equip ℭ(𝛸) with the partial order given by

𝔘̃ ≤ 𝔙̃ ⟺ 𝑈̃𝑥 ⊂ 𝑉̃𝑥 for all 𝑥 ∈ 𝛸.

For 𝔘̃ ≤ 𝔙̃, the identity map on 𝛸 induces a canonical homomorphism

𝐶∗
Φ(𝔙̃; 𝒜) → 𝐶∗

Φ(𝔘̃; 𝒜)

for each family of support Φ on 𝛸. Define the Čech cochain complex on 𝛸 by

𝐶̃∗
Φ(𝛸;𝒜) = lim−−→𝐶∗

Φ(𝔘̃; 𝒜),

where the inductive limit is taken over 𝔘 ∈ ℭ(𝛸). The Čech homology groups of 𝒜 is then
defined to be

𝛨̃𝑛
Φ(𝛸;𝒜) = 𝛨𝑛(𝐶̃∗

Φ(𝛸;𝒜)), 𝑛 ≥ 0.
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We can see that

𝛨̃𝑛
Φ(𝛸;𝒜) = 𝛨𝑛(lim−−→𝐶∗

Φ(𝔘̃; 𝒜)) = lim−−→𝛨𝑛(𝐶∗
Φ(𝔘̃; 𝒜)) = lim−−→𝛨𝑛

Φ(𝔘̃; 𝒜).

Suppose 𝔘 is an arbitrary open cover of 𝛸. There exists 𝔘̃ ∈ ℭ(𝛸) such that 𝔘̃ is a refinement
of 𝔘. Then we have a canonical homomorphism given by the refinement relation

𝛨𝑛
Φ(𝔘;𝒜) → 𝛨𝑛

Φ(𝔘̃; 𝒜),

and a canonical homomorphism given by the inductive limit

𝛨𝑛
Φ(𝔘̃; 𝒜) → 𝛨̃𝑛

Φ(𝛸;𝒜).

Their composition gives a homomorphism

𝛨𝑛
Φ(𝔘;𝒜) → 𝛨̃𝑛

Φ(𝛸;𝒜).

We claim that this homomorphism is independent of the choice of 𝔘̃. Indeed, suppose 𝔙̃ ∈ ℭ(𝛸) is
another refinement of 𝔘. Then we have another open cover 𝔚̃ ∈ ℭ(𝛸) of 𝛸 such that 𝔚̃ ≤ 𝔘̃ and
𝔚̃ ≤ 𝔙̃. It follows that we have the commutative diagram

𝛨𝑛
Φ(𝔘;𝒜)

𝛨𝑛
Φ(𝔘̃; 𝒜) 𝛨𝑛

Φ(𝔚̃;𝒜) 𝛨𝑛
Φ(𝔙̃; 𝒜)

𝛨̃𝑛
Φ(𝛸;𝒜)

This shows that the above homomorphism is canonical.
It can be shown that for each open covers 𝔘 and 𝔙 of 𝛸 such that 𝔙 is a refinement of 𝔘, we

have the commutative diagram

𝛨𝑛
Φ(𝔘;𝒜) 𝛨𝑛

Φ(𝔙;𝒜)

𝛨̃𝑛
Φ(𝛸;𝒜)

Furthermore, by the explicit construction of the inductive limit of abelian groups, we can see that

𝛨̃𝑛
Φ(𝛸;𝒜) = lim−−→𝛨𝑛

Φ(𝔘;𝒜),

where the inductive limit is taken over all the open covers 𝔘 over 𝛸. More generally, if ℭ is a family
of open covers on 𝛸 such that each open cover 𝔘 of 𝛸 attains a refinement in ℭ, then 𝛨̃𝑛

Φ(𝛸;𝒜) is
the inductive limit taken over ℭ.

Theorem 5.7 Suppose 𝛸 is a topological space, Φ is a family of support on 𝛸 such that each
𝑆 ∈ Φ attains a neighborhood in Φ. Then the functor 𝒜 ↦ 𝐶̃∗

Φ(𝛸;𝒜) takes an exact sequence of
presheaves to an exact sequence of complexes.

Proof. Consider an exact sequence of presheaves

0 → 𝒜 → ℬ → 𝒞 → 0,
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which implies an exact sequence
0 → 𝒜(𝑈) → ℬ(𝑈) → 𝒞(𝑈) → 0

for each open 𝑈 ⊂ 𝛸. It follows that
0 → 𝐶∗(𝔘;𝒜) → 𝐶∗(𝔘; ℬ) → 𝐶∗(𝔘; 𝒞) → 0

is exact for each open cover 𝔘, which yields from the left exactness of ΓΦ that
0 → 𝐶∗

Φ(𝔘;𝒜) → 𝐶∗
Φ(𝔘; ℬ) → 𝐶∗

Φ(𝔘; 𝒞)
is exact. Passing to the inductive limit, we see the exactness of

0 → 𝐶̃∗
Φ(𝛸;𝒜) → 𝐶̃∗

Φ(𝛸;ℬ) → 𝐶̃∗
Φ(𝛸; 𝒞).

It remains to show the surjectivity of 𝐶̃∗
Φ(𝛸;ℬ) → 𝐶̃∗

Φ(𝛸; 𝒞).
Consider an element in 𝐶̃𝑝

Φ(𝛸; 𝒞) represented by an cochain 𝛼 ∈ 𝐶𝑝
Φ(𝔘̃; 𝒞) with 𝑆 ∈ Φ being its

support. Take a neighborhood 𝛵 ∈ Φ of 𝑆. By replacing 𝔘̃ with a refinement if necessary, we may
assume that 𝑈𝑥 ⊂ 𝛵 for each 𝑥 ∈ 𝑆 and 𝛼𝑠 = 0 if 𝑠 = {𝑥0, ⋯ , 𝑥𝑝} is not contained in 𝑆. Then each 𝛼𝑠 can
be lifted to 𝛽𝑠 ∈ ℬ(𝑈𝑠), which generates a cochain 𝛽 ∈ 𝐶𝑝

Φ(𝔘̃; ℬ). This completes the proof.

This implies that an exact sequence of presheaves yields an exact sequence of Čech cohomology
groups.

Recalling that we have a canonical homomorphism
𝛨𝑛(𝔘;𝒜) → 𝛨𝑛(𝛸;𝒜)

for each open cover 𝔘 of 𝛸, the universal property of the inductive limit yields a canonical homo-
morphism

𝛨̃𝑛(𝛸;𝒜) → 𝛨𝑛(𝛸;𝒜).
The rest of this section devotes to showing the bĳectivity of this homomorphism.

Suppose ℱ∗ = 𝒞∗(𝛸;𝒜) is the Godement resolution of 𝒜. Consider the double complex
𝛫̃ = {𝐶̃𝑝(𝛸;ℱ𝑞)} .

We have the canonical homomorphisms of complexes
𝐶̃∗(𝛸;𝒜) → 𝛫̃∗

tot ← Γ(ℱ∗).
By theorem 5.3, we have 𝛨̃𝑞(𝛸;ℱ𝑝) for each 𝑞 > 0 and 𝑝, implying that

𝛪𝛪𝛦𝑝,𝑞
2 = 𝛨𝑝(𝛨̃𝑞(𝛸;ℱ∗)) = 0, 𝑞 > 0.

Thus the canonical homomorphism
𝛨𝑛(𝛸;𝒜) = 𝛨𝑛(𝛨̃0(𝛸;ℱ∗)) → 𝛨𝑛(𝛫̃∗

tot)
is bĳective. Define the presheaf

ℋ𝑞(𝛸;𝒜) ∶ 𝑈 ↦ 𝛨𝑞(ℱ∗(𝑈)) = 𝛨𝑞(𝑈;𝒜)
for each 𝑞. Then as 𝐶̃𝑝(𝛸; −) is an exact functor from 𝗉𝖲𝗁(𝛸, 𝖠𝖻), we have

𝛨𝑞(𝛫𝑝,∗) = 𝛨𝑞(𝐶̃𝑝(𝛸;ℱ∗)) = 𝐶̃𝑝(𝛸;ℋ𝑞(𝛸;𝒜)),
and hence

𝛪𝛦𝑝,𝑞
2 = 𝛨̃𝑝(𝛸;ℋ𝑞(𝛸;𝒜)).
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Theorem 5.8 Suppose 𝛸 is a topological space and 𝒜 is a sheaf on 𝛸. Consider the presheaves

ℋ𝑞(𝛸;𝒜) ∶ 𝑈 ↦ 𝛨𝑞(ℱ∗(𝑈)).

Then the following convergence of the spectral sequence holds:

𝛦𝑝,𝑞
2 = 𝛨̃𝑝(𝛸;ℋ𝑞(𝛸;𝒜)) ⇒ 𝛨𝑝+𝑞(𝛸;𝒜).

The spectral sequence actually gives the canonical homomorphism

𝛨̃𝑛(𝛸;𝒜) → 𝛨𝑛(𝛸;𝒜)

by the canonical isomorphismℋ0(𝛸;𝒜) = 𝒜. It is worth noting that the sheaf generated byℋ𝑞(𝛸;𝒜)
is zero for 𝑞 > 0, as each cocycle of ℱ∗ is a coboundary locally.

Lemma 5.9 If ℱ is a presheaf on 𝛸 generating a zero sheaf, then 𝛨̃0(𝛸;ℱ) = 0.

Proof. Consider a cochain 𝛼 ∈ 𝐶̃0(𝛸;ℱ) given by an open cover 𝔘̃ = {𝑈𝑥}𝑥∈𝛸 of 𝛸 and a family
{𝛼𝑥} with 𝛼𝑥 ∈ ℱ(𝑈𝑥). Since the sheaf generated by ℱ is zero, there is a neighborhood 𝑉𝑥 ⊂ 𝑈𝑥 of
𝑥 such that 𝛼𝑥|𝑉𝑥 = 0. Passing to 𝔙̃ = {𝑉𝑥}𝑥∈𝛸, we obtain 𝐶̃0(𝛸;ℱ) = 0, which clearly implies that
𝛨̃0(𝛸;ℱ) = 0.

We then see that 𝛨̃0(𝛸;ℋ1(𝛸;𝒜)) = 𝛨̃0(𝛸;ℋ2(𝛸;𝒜)) = 0, which implies the following corollary.

Corollary 5.10 Suppose 𝛸 is a topological space and 𝒜 is a sheaf on 𝛸. Then the canonical
homomorphism

𝛨̃𝑛(𝛸;𝒜) → 𝛨𝑛(𝛸;𝒜)
is bĳective for 𝑛 = 0, 1 and injective for 𝑛 = 2.

The above results actually hold for each family of support Φ satisfying the condition of theorem
5.7.

Theorem 5.11 Suppose 𝛸 is a topological space, Φ is a paracompactified family on 𝛸, and ℱ is
a presheaf on 𝛸. If the sheaf generated by ℱ is zero, then

𝛨̃𝑛
Φ(𝛸;ℱ) = 0, 𝑛 ≥ 0.

Proof. We will show that each cohomological class in 𝛨̃𝑛
Φ(𝛸;𝒜) can be represented by a locally finite

open cover 𝔘 and a cocycle on 𝔘. Next we will show that each cochain on this cover induces zero
on a refinement.

Consider a cohomological class in 𝛨̃𝑛
Φ(𝛸;𝒜) represented by an open cover 𝔘 = {𝑈𝑖}𝑖∈𝛪 and a

cocycle 𝛼 ∈ 𝐶𝑛(𝔘;𝒜) supported on 𝑆 ∈ Φ. Take a neighborhood 𝑆′ ∈ Φ of 𝑆, for which we can assume
that each 𝑈𝑖 intersecting 𝑆 is contained in 𝑆′. Let

𝛪0 = {𝑖 ∈ 𝛪 ∣ 𝑈𝑖 ∩ 𝑆 ≠ ∅}.

Since 𝛼 supports on 𝑆, each 𝑥 ∈ 𝛸 ∖ 𝑆 attains a neighborhood 𝑉(𝑥) such that 𝛼𝑠 induces zero on
𝑈𝑠 ∩ 𝑉(𝑥) for each 𝑠 ⊂ 𝛪. Replacing 𝔘 by its refinement if necessary, we may assume that each 𝑈𝑖
with 𝑖 ∉ 𝛪0 is contained in some 𝑉(𝑥), which implies that 𝛼𝑠 = 0 if 𝑠 is not contained in 𝛪0. We then
see that the cohomological class can be represented by an open cover 𝔘 = {𝑈𝑖}𝑖∈{0}∪𝛪0 with 𝑈0 = 𝛸∖𝑆
and 𝑈𝑖 ⊂ 𝑆′ if 𝑖 ∈ 𝛪0. Since 𝑆′ is paracompact, there is a locally finite refinement of 𝔘 ∩ 𝑆′. Passing
to this refinement, it is valid to assume the local finiteness of 𝔘.
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Now consider a locally finite recover 𝔘 = {𝑈𝑖}𝑖∈𝛪 together with a refinement 𝔙 = {𝑉𝑖}𝑖∈𝛪 with
𝑉𝑖 ⊂ 𝑈𝑖 for each 𝑖 ∈ 𝛪 and 𝛼 ∈ 𝐶𝑛

Φ(𝔘;𝒜). For each 𝑥 ∈ 𝛸 we can take a neighborhood 𝑊𝑥 such that
𝑥 ∈ 𝑈𝑖 implies 𝑊𝑥 ⊂ 𝑈𝑖, 𝑥 ∈ 𝑉𝑖 implies 𝑊𝑥 ⊂ 𝑉𝑖, and that 𝑊𝑥 intersects 𝑉𝑖 implies 𝑥 ∈ 𝑈𝑖. Moreover,
since the sheaf generated by 𝒜 is zero, each 𝑥 ∈ 𝑈𝑠 has a neighborhood on which 𝛼𝑠 induces zero.
Thus we can meanwhile asssume that 𝑥 ∈ 𝑈𝑠 implies 𝛼𝑠|𝑊𝑥

= 0. Take any map 𝜄 ∶ 𝛸 → 𝛪 such that
𝑊𝑥 ⊂ 𝑉𝜄(𝑥) for each 𝑥 ∈ 𝛸. Consider any (𝑥1, ⋯ , 𝑥𝑛) ⊂ 𝛸 such that 𝑊𝑥0⋯𝑥𝑛 ≠ ∅. Assume 𝑖𝑘 = 𝜄(𝑥𝑘) for
each 𝑘. As

𝑊𝑥0 ∩ ⋯ ∩𝑊𝑥𝑛 ≠ ∅,
𝑊𝑥0 intersects each 𝑊𝑥𝑘 ⊂ 𝑉𝑖𝑘 , and then our assumption suggests that 𝑥0 ∈ 𝑈𝑖0⋯𝑖𝑛 . It follows that
𝑊𝑥0 ⊂ 𝑈𝑖0⋯𝑖𝑛 , and 𝛼𝑖0⋯𝑖𝑛|𝑊𝑥0

= 0. Clearly we obtain

𝛼𝑖0⋯𝑖𝑛|𝑊𝑥0⋯𝑥𝑛
= 0,

i.e., 𝜄∗(𝛼) = 0.

Theorem 5.12 Suppose 𝛸 is a topological space, Φ is a paracompactified family on 𝛸 and 𝒜 is
a sheaf on 𝛸. Then the canonical homomorphisms

𝛨̃𝑛
Φ(𝛸;𝒜) → 𝛨𝑛

Φ(𝛸;𝒜)

are bĳective.

Proof. We have
𝛨̃𝑝
Φ(𝛸;ℋ

𝑞(𝛸;𝒜)) = 0, 𝑞 > 0
from theorem 5.11. Then the generalized version of theorem 5.8 implies the desired isomorphisms.
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