

Sheaf Theory

Miris Li

May 23, 2025

We are trying to use the categorical language to describe the sheaf theory, mostly using the universal properties.

1 Sheaves of sets

Construct a contravariant functor $\text{Open} : \text{Top}^{\text{op}} \rightarrow \text{Cat}$. For each topological space X , we define $\text{Open}(X)$ to be the category whose objects are open subsets of X and whose morphisms are inclusions of open sets. For each continuous map $f : X \rightarrow Y$, the functor $\text{Open}(f)$ sends an open set $V \subset Y$ to the open set $f^{-1}(V) \subset X$, and maps the inclusions correspondingly.

Definition 1.1 (presheaf) A **presheaf (of sets)** on a topological space X is a contravariant functor

$$\mathcal{F} : \text{Open}(X)^{\text{op}} \rightarrow \text{Set}.$$

The category of presheaves on X , with morphisms given by natural transformations, is denoted by $\text{pSh}(X, \text{Set})$, i.e.,

$$\text{pSh}(X, \text{Set}) = \text{Fun}(\text{Open}(X)^{\text{op}}, \text{Set}).$$

If \mathcal{F} is a presheaf on X and $U \subset V \subset X$ are open sets, then we denote the **restriction morphism**

$$\mathcal{F}(V) \rightarrow \mathcal{F}(U)$$

by r_U^V or $(-)|_U$.

Definition 1.2 (sheaf) A **sheaf (of sets)** on a topological space X is a presheaf \mathcal{F} such that for every open cover $\{U_i\}_{i \in I}$ of an open set $U \subset X$, the following diagram is an equalizer:

$$\mathcal{F}(U) \xrightarrow{\pi} \prod_{i \in I} \mathcal{F}(U_i) \rightrightarrows_{\rho}^{\lambda} \prod_{j, k \in I} \mathcal{F}(U_j \cap U_k)$$

where π is given by the restriction morphisms $\mathcal{F}(U) \rightarrow \mathcal{F}(U_i)$, λ is given by the restriction morphisms $\mathcal{F}(U_i) \rightarrow \mathcal{F}(U_i \cap U_k)$ and ρ is given by the restriction morphisms $\mathcal{F}(U_i \cap U_k) \rightarrow \mathcal{F}(U_j \cap U_i)$.

The category of sheaves on X , with morphisms given by natural transformations, is denoted by $\text{Sh}(X, \text{Set})$. It is clear that $\text{Sh}(X, \text{Set})$ is a full subcategory of $\text{pSh}(X, \text{Set})$.

Example 1.1 (sheaf of sections) Suppose E and X are a topological spaces and $p : E \rightarrow X$ is a continuous map. For each open subset $U \subset X$, a **section** of (E, p) on U is a continuous map $s : U \rightarrow E$ such that $p(s(x)) = x$ for each $x \in U$. Denote the set of sections of (E, p) on U by $\Gamma(U, E)$. The assignment

$$U \mapsto \Gamma(U, E)$$

defines a presheaf on X , with the restriction morphisms given by the restriction of sections. This is actually a sheaf, called the **sheaf of sections** of (E, p) .

The **sheafification** of presheaves is defined as the left adjoint of the inclusion (or forgetful) functor

$$\mathrm{Sh}(X, \mathrm{Set}) \rightarrow \mathrm{pSh}(X, \mathrm{Set}).$$

The sheafification of a presheaf \mathcal{F} is usually denoted by \mathcal{F}^+ .

The sheafification of a presheaf can be constructed explicitly using the concept of etale spaces.

Definition 1.3 (etale space) An **etale space** over a topological space X is a pair (E, p) , where E is a topological space and $p : E \rightarrow X$ is a local homeomorphism.

The category of etale spaces over X is denoted by $\mathrm{Et}(X)$. The morphisms in $\mathrm{Et}(X)$ are continuous maps $f : (E, p) \rightarrow (E', p')$ such that $p' \circ f = p$.

Theorem 1.1 For a topological space X , there are functors

$$F : \mathrm{Et}(X) \rightarrow \mathrm{Sh}(X, \mathrm{Set})$$

and

$$G : \mathrm{pSh}(X, \mathrm{Set}) \rightarrow \mathrm{Et}(X)$$

such that F is a category equivalence and the following diagrams commutes up to natural isomorphism:

$$\begin{array}{ccccc} \mathrm{Et}(X) & \xrightarrow{F} & \mathrm{Sh}(X, \mathrm{Set}) & \xleftarrow{(-)^+} & \mathrm{pSh}(X, \mathrm{Set}) \\ & \swarrow & & \downarrow \iota & \\ & & G & & \end{array}$$

where ι is the inclusion functor and $(-)^+$ is the sheafification functor.

Proof. The functor F is defined such that $F(E, p)$ is the sheaf of sections of (E, p) , and the morphism $F(f)$ is given by the composition of f with the sections.

Suppose \mathcal{F} is a presheaf on X . For each $x \in X$, define the **stalk** of \mathcal{F} at x to be the set

$$\mathcal{F}_x = \varinjlim \mathcal{F}(U),$$

where the limit is taken over all open sets U containing x . Let

$$E = \coprod_{x \in X} \mathcal{F}_x$$

and define the map

$$p : E \rightarrow X$$

by assigning $x \in X$ to the elements in the stalk \mathcal{F}_x . For each open set $U \subset X$ and $s \in \mathcal{F}(U)$, there is a function $\tilde{s} : U \rightarrow E$ mapping each $x \in U$ to the corresponding element of s in \mathcal{F}_x . Give E the finest topology such that \tilde{s} is continuous for each open subset $U \subset X$ and $s \in \mathcal{F}(U)$. It can be verified that (E, p) is an etale space over X .

Now suppose $f : \mathcal{F} \rightarrow \mathcal{G}$ is a morphism of presheaves. Using the universal property of the inductive limit, we can deduce a unique map

$$\tilde{f}_x : \mathcal{F}_x \rightarrow \mathcal{G}_x$$

for each $x \in X$ such that for each neighborhood U of x , the following diagram commutes:

$$\begin{array}{ccc} \mathcal{F}(U) & \xrightarrow{f(U)} & \mathcal{G}(U) \\ \downarrow & & \downarrow \\ \mathcal{F}_x & \xrightarrow{\tilde{f}_x} & \mathcal{G}_x \end{array}$$

Suppose (E, p) is the etale space constructed from \mathcal{F} and (E', p') is the etale space constructed from \mathcal{G} . Putting these \tilde{f}_x together, we get a morphism

$$\tilde{f} : (E, p) \rightarrow (E', p')$$

in $\text{Et}(X)$. The functor G is then defined by assigning to each presheaf \mathcal{F} the etale space (E, p) constructed above. \square

For each presheaf \mathcal{F} , the corresponding sheaf $F(G(\mathcal{F}))$ is a sheafification of \mathcal{F} , called the sheaf generated by the presheaf \mathcal{F} .

Remark Suppose (E, p) is an etale space over X and \mathcal{F} is the sheaf of sections of (E, p) . Then the elements in \mathcal{F}_x is called the **germs** of sections of (E, p) at x . Two sections s, t of (E, p) on neighborhoods U and V of x define the same germ at x if and only if there exists a neighborhood $W \subset U \cap V$ of x such that $s|_W = t|_W$.

Remark The sheafification process preserves the stalks. Indeed, for each presheaf \mathcal{F} , the stalk of \mathcal{F}^+ at x is naturally isomorphic to

$$\varinjlim \Gamma\left(U, \coprod_{y \in X} \mathcal{F}_y\right) = \mathcal{F}_x,$$

where the limit is taken over all open sets U containing x . This isomorphism is actually canonical.

Using the category equivalence between $\text{Et}(X)$ and $\text{Sh}(X, \text{Set})$, we can also figure out the condition of a morphism of sheaves to be injective or surjective. Suppose \mathcal{F} and \mathcal{G} are sheaves on X and $f : \mathcal{F} \rightarrow \mathcal{G}$ is a morphism of sheaves. Then f is injective (surjective) if and only if the corresponding morphism of etale spaces $\tilde{f} : (E, p) \rightarrow (E', p')$ is injective (surjective), which is then equivalent to that \tilde{f}_x is injective (surjective) for each $x \in X$. It can be seen that if f is injective, then $f(U) : \mathcal{F}(U) \rightarrow \mathcal{G}(U)$ is injective for each open set $U \subset X$. However, if f is surjective, it is *not necessarily true* that $f(U)$ is surjective for each open set $U \subset X$.

The subsheaf and quotient sheaf of a sheaf \mathcal{F} can be defined as the subobject and quotient object in the category $\text{Sh}(X, \text{Set})$. Specifically, a subsheaf of \mathcal{F} is a sheaf \mathcal{G} together with an injective morphism $i : \mathcal{G} \rightarrow \mathcal{F}$, and a quotient sheaf of \mathcal{F} is a sheaf \mathcal{Q} together with a surjective morphism $q : \mathcal{F} \rightarrow \mathcal{Q}$. Similarly we can consider the direct product of sheaves and the inductive limit of a family of sheaves.

Two important constructions in sheaf theory are the direct image sheaf and the inverse image sheaf.

Suppose $f : X \rightarrow Y$ is a continuous map between topological spaces X and Y . Then f induces a functor

$$\text{Open}(f) : \text{Open}(Y) \rightarrow \text{Open}(X).$$

For each presheaf \mathcal{F} on X , define the **direct image** $f_* \mathcal{F}$ to be the presheaf on Y given by the composition

$$\text{Open}(Y) \xrightarrow{\text{Open}(f)} \text{Open}(X) \xrightarrow{\mathcal{F}} \text{Set}.$$

It can be verified that $f_*\mathcal{F}$ is a sheaf on Y . The direct image f_* gives a functor

$$f_* : \mathrm{Sh}(X, \mathrm{Set}) \rightarrow \mathrm{Sh}(Y, \mathrm{Set}).$$

Suppose \mathcal{F} is a sheaf on X and \mathcal{G} is a sheaf on Y , with the corresponding etale spaces $p : E \rightarrow X$ and $p' : E' \rightarrow Y$. A morphism $g : \mathcal{F} \rightarrow \mathcal{G}$ compatible with f is a continuous map $g : E \rightarrow E'$ such that the following diagram commutes:

$$\begin{array}{ccc} E & \xrightarrow{g} & E' \\ p \downarrow & & \downarrow p' \\ X & \xrightarrow{f} & Y \end{array}$$

The **inverse image** $f^{-1}\mathcal{G}$ of \mathcal{G} is the sheaf on X , together with a morphism $\tilde{f} : f^{-1}\mathcal{G} \rightarrow \mathcal{G}$ compatible with f , satisfying the following universal property: for each sheaf \mathcal{F} on X and each morphism $g : \mathcal{F} \rightarrow \mathcal{G}$ compatible with f , there exists a unique morphism $h : \mathcal{F} \rightarrow f^{-1}\mathcal{G}$ (of sheaves on X) such that $g = \tilde{f} \circ h$. The inverse image f^{-1} gives a functor

$$f^{-1} : \mathrm{Sh}(Y, \mathrm{Set}) \rightarrow \mathrm{Sh}(X, \mathrm{Set}).$$

The inverse image $f^{-1}\mathcal{G}$ can be constructed explicitly by the map

$$U \mapsto f^{-1}\mathcal{G}(U) := \{s \in \Gamma(U, E') \mid s(x) \in \mathcal{G}_{f(x)} \text{ for each } x \in U\}.$$

An equivalent construction of the inverse image is given by

$$f^{-1}\mathcal{G}(U) = \varinjlim \mathcal{G}(V),$$

where the inductive limit is taken over all open set $V \subset Y$ such that $f(U) \subset V$.

If X is a subspace of Y and $f : X \rightarrow Y$ is the inclusion map, then the inverse image $f^{-1}\mathcal{G}$ is called the **restriction sheaf** of \mathcal{G} to X , and is denoted by $\mathcal{G}|_X$.

Theorem 1.2 For each continuous map $f : X \rightarrow Y$ between topological spaces, the functors $f^{-1} : \mathrm{Sh}(Y, \mathrm{Set}) \rightarrow \mathrm{Sh}(X, \mathrm{Set})$ and $f_* : \mathrm{Sh}(X, \mathrm{Set}) \rightarrow \mathrm{Sh}(Y, \mathrm{Set})$ form an adjoint pair, i.e., there is a natural isomorphism for each sheaf \mathcal{F} on X and each sheaf \mathcal{G} on Y

$$\mathrm{Hom}_{\mathrm{Sh}(X, \mathrm{Set})}(f^{-1}\mathcal{G}, \mathcal{F}) = \mathrm{Hom}_{\mathrm{Sh}(Y, \mathrm{Set})}(\mathcal{G}, f_*\mathcal{F}).$$

2 Sheaves of modules

The construction of sheaves of sets can be generalized to sheaves of objects in an arbitrary category \mathcal{C} .

Definition 2.1 (presheaf) A (\mathcal{C} -valued) **presheaf** on a topological space X is a contravariant functor

$$\mathcal{F} : \mathrm{Open}(X)^{\mathrm{op}} \rightarrow \mathcal{C}.$$

Definition 2.2 (sheaf) A (\mathcal{C} -valued) **sheaf** on a topological space X is a presheaf \mathcal{F} such that for every open cover $\{U_i\}_{i \in I}$ of an open set $U \subset X$, the following diagram is an equalizer:

$$\mathcal{F}(U) \xrightarrow{\pi} \prod_{i \in I} \mathcal{F}(U_i) \rightrightarrows^{\lambda} \prod_{j, k \in I} \mathcal{F}(U_j \cap U_k)$$

where π is given by the restriction morphisms $\mathcal{F}(U) \rightarrow \mathcal{F}(U_i)$, λ is given by the restriction morphisms $\mathcal{F}(U_i) \rightarrow \mathcal{F}(U_i \cap U_k)$ and ρ is given by the restriction morphisms $\mathcal{F}(U_i) \rightarrow \mathcal{F}(U_j \cap U_i)$.

The category of \mathcal{C} -valued presheaves and sheaves on X are also defined naturally, denoted by $\text{pSh}(X, \mathcal{C})$ and $\text{Sh}(X, \mathcal{C})$, respectively.

An Ab -valued (pre-) sheaf is also called a **sheaf of abelian groups**, and a Rng -valued (pre-) sheaf is called a **sheaf of rings**.

Similarly to the case of (pre-) sheaves of sets, we can define the stalk of a presheaf at a point, and the sheafification of a presheaf. The stalk of a sheaf \mathcal{F} at $x \in X$ is denoted by \mathcal{F}_x , and the sheafification of \mathcal{F} is denoted by \mathcal{F}^+ .

Example 2.1 Suppose X is a topological space and \mathcal{A} is an abelian group (or a ring). Consider the presheaf \mathcal{F} on X given by $U \mapsto \mathcal{A}$ for each nonempty open set $U \subset X$. Then the sheafification \mathcal{F}^+ is a sheaf of abelian groups (or rings) on X , which has the expression as

$$\mathcal{F}^+(U) = \{f : U \rightarrow \mathcal{A} \mid f \text{ is locally constant}\}.$$

This is called the **locally constant sheaf** on X with values in \mathcal{A} , denoted by $\underline{\mathcal{A}}$. The stalk of $\underline{\mathcal{A}}$ at $x \in X$ is isomorphic to \mathcal{A} for each $x \in X$.

Example 2.2 If X is a topological space, then the sheaf of continuous functions on X , given by

$$C_X^0(U) = \{f : U \rightarrow \mathbb{R} \mid f \text{ is continuous}\},$$

is a sheaf of rings on X . If M is a smooth manifold, then the sheaf of smooth functions on M , given by

$$C_M^\infty(U) = \{f : U \rightarrow \mathbb{R} \mid f \text{ is smooth}\},$$

is a sheaf of rings on M . If M is a complex manifold, then the sheaf of holomorphic functions on M , given by

$$\mathcal{O}_M(U) = \{f : U \rightarrow \mathbb{C} \mid f \text{ is holomorphic}\},$$

is a sheaf of rings on M .

Definition 2.3 (module over a sheaf of rings) Suppose X is a topological space and \mathcal{A} is a sheaf of rings on X . A **(left) \mathcal{A} -module** is a sheaf \mathcal{M} of abelian groups on X such that for each open set $U \subset X$, $\mathcal{M}(U)$ is a (left) $\mathcal{A}(U)$ -module, and that for each open sets $V \subset U \subset X$, the following diagram commutes:

$$\begin{array}{ccc} \mathcal{A}(U) \times \mathcal{M}(U) & \longrightarrow & \mathcal{M}(U) \\ \downarrow & & \downarrow \\ \mathcal{A}(V) \times \mathcal{M}(V) & \longrightarrow & \mathcal{M}(V) \end{array}$$

where the vertical arrows are the restriction morphisms and the horizontal arrows are the action of \mathcal{A} on \mathcal{M} .

Remark If $\mathcal{A} = \underline{\mathcal{A}}$, then an $\underline{\mathcal{A}}$ -module is exactly a sheaf of \mathcal{A} -modules on X . In particular, a $\underline{\mathbb{Z}}$ -module is equivalent to a sheaf of abelian groups on X .

Remark By taking the inductive limits, we can see that for each $x \in X$, the stalk \mathcal{M}_x is naturally a \mathcal{A}_x -module.

A morphism $f : \mathcal{L} \rightarrow \mathcal{M}$ of \mathcal{A} -modules is a morphism of sheaves of abelian groups such that for each open set $U \subset X$, $f(U) : \mathcal{L}(U) \rightarrow \mathcal{M}(U)$ is a homomorphism of $\mathcal{A}(U)$ -modules. For two morphisms $f, g : \mathcal{L} \rightarrow \mathcal{M}$ of \mathcal{A} -modules, we define their sum $f + g$ by

$$(f + g)(U) = f(U) + g(U) : \mathcal{L}(U) \rightarrow \mathcal{M}(U)$$

for each open set $U \subset X$. With respect to this addition, the zero morphism is clear. This gives a structure of abelian group on the set $\text{Hom}_{\mathcal{A}}(\mathcal{L}, \mathcal{M})$ of morphisms between \mathcal{A} -modules \mathcal{L} and \mathcal{M} . The category of \mathcal{A} -modules is denoted by $\mathcal{A}-\text{Mod}$.

The direct product and the direct sum of \mathcal{A} -modules are defined in the natural way. They give the product object and the coproduct object in the category $\mathcal{A}-\text{Mod}$.

For a sheaf \mathcal{A} of rings on X and \mathcal{A} -modules \mathcal{L} and \mathcal{M} , we can define the **sheaf hom** $\mathcal{H}\text{om}_{\mathcal{A}}(\mathcal{L}, \mathcal{M})$ to be the presheaf of abelian groups on X given by

$$\mathcal{H}\text{om}_{\mathcal{A}}(\mathcal{L}, \mathcal{M})(U) = \text{Hom}_{\mathcal{A}|_U}(\mathcal{L}|_U, \mathcal{M}|_U)$$

for each open set $U \subset X$. It turns out that $\mathcal{H}\text{om}_{\mathcal{A}}(\mathcal{L}, \mathcal{M})$ is a sheaf of abelian groups on X , and if \mathcal{A} is commutative, then $\mathcal{H}\text{om}_{\mathcal{A}}(\mathcal{L}, \mathcal{M})$ is canonically an \mathcal{A} -module.

Theorem 2.1 Suppose X is a topological space and \mathcal{A} is a sheaf of commutative rings with identity on X . Then for each \mathcal{A} -module \mathcal{M} , the sheaf hom $\mathcal{H}\text{om}_{\mathcal{A}}(\mathcal{A}, \mathcal{M})$ is naturally isomorphic to \mathcal{M} as an \mathcal{A} -module.

An **\mathcal{A} -submodule** and a **quotient \mathcal{A} -module** of an \mathcal{A} -module \mathcal{M} on X are defined to be a subobject and a quotient object of \mathcal{M} in the category $\mathcal{A}-\text{Mod}$, respectively. However, we may have an alternative intuitive definition. A submodule of \mathcal{M} is an \mathcal{A} -module \mathcal{N} such that for each open set U , $\mathcal{N}(U)$ is an $\mathcal{A}(U)$ -submodule of $\mathcal{M}(U)$, and that the restriction morphisms commute with the inclusion of $\mathcal{N}(U)$ into $\mathcal{M}(U)$. The quotient \mathcal{A} -module \mathcal{M}/\mathcal{N} is then defined to be the sheaf of abelian groups associated to the presheaf $U \mapsto \mathcal{M}(U)/\mathcal{N}(U)$, with the structure of \mathcal{A} -module given by the induced action of $\mathcal{A}(U)$ on $\mathcal{M}(U)/\mathcal{N}(U)$. Then for each $x \in X$, the stalk \mathcal{N}_x can be identified with an \mathcal{A}_x -submodule of \mathcal{M}_x , and the stalk $(\mathcal{M}/\mathcal{N})_x$ can be identified with the quotient \mathcal{A}_x -module $\mathcal{M}_x/\mathcal{N}_x$.

Theorem 2.2 Suppose X is a topological space and \mathcal{A} is a sheaf of rings on X . Then the category $\mathcal{A}-\text{Mod}$ of \mathcal{A} -modules is an abelian category.

Proof. Suppose $f : \mathcal{L} \rightarrow \mathcal{M}$ is a morphism of \mathcal{A} -modules. The presheaf $U \mapsto \ker f(U)$ is actually a sheaf, which is defined to be the kernel of f . The sheaves associated to the presheaves $U \mapsto \text{im } f(U)$ and $U \mapsto \text{coker } f(U)$, are defined to be the image and cokernel of f , respectively. We can see that $\ker f$ is a \mathcal{A} -submodule of \mathcal{L} , $\text{im } f$ is a \mathcal{A} -submodule of \mathcal{M} and a quotient \mathcal{A} -module of \mathcal{L} , and $\text{coker } f$ is a quotient \mathcal{A} -module of \mathcal{M} , all in a natural way. We also have the natural \mathcal{A} -module isomorphisms

$$\mathcal{L}/\ker f \xrightarrow{\sim} \text{im } f, \quad \mathcal{M}/\text{im } f \xrightarrow{\sim} \text{coker } f.$$

□

A sequence of \mathcal{A} -modules

$$\mathcal{L} \xrightarrow{f} \mathcal{M} \xrightarrow{g} \mathcal{N}$$

is called an **exact sequence** if the image of f is equal to the kernel of g , just as the case of a general abelian category.

Theorem 2.3 Suppose X is a topological space and \mathcal{A} is a sheaf of rings on X . Then the sequence of \mathcal{A} -modules

$$\mathcal{L} \xrightarrow{f} \mathcal{M} \xrightarrow{g} \mathcal{N}$$

is exact if and only if for each $x \in X$, the induced sequence of \mathcal{A}_x -modules

$$\mathcal{L}_x \xrightarrow{f_x} \mathcal{M}_x \xrightarrow{g_x} \mathcal{N}_x$$

is exact.

Remark This shows that the functor $\mathcal{A} - \text{Mod} \rightarrow \mathcal{A}_x - \text{Mod}$ given by

$$\mathcal{L} \mapsto \mathcal{L}_x$$

is exact for each $x \in X$. However, it is worth noting that for an open subset $U \subset X$, the functor

$$\Gamma(U, -) : \mathcal{A} - \text{Mod} \rightarrow \mathcal{A}(U) - \text{Mod}$$

is only left exact.

Example 2.3 Suppose M is an n -dimensional smooth manifold. For each $p \geq 0$, consider the \mathbb{R} -module Ω^p of differential p -forms on M , where $\Omega^p(U)$ is the differential p -forms on U for each open set $U \subset M$. The exterior derivative d gives a morphism $\Omega^p \rightarrow \Omega^{p+1}$ of \mathbb{R} -modules for each $p \geq 0$. Moreover, we can embed \mathbb{R} into Ω^0 by viewing a locally constant function as a differential 0-form, i.e., a smooth function on M . Then we obtain a sequence of \mathbb{R} -modules

$$0 \longrightarrow \mathbb{R} \longrightarrow \Omega^0 \xrightarrow{d} \Omega^1 \xrightarrow{d} \dots \xrightarrow{d} \Omega^n \longrightarrow 0$$

By Poincaré lemma, we have the following exact sequence of \mathbb{R} -spaces:

$$0 \longrightarrow \mathbb{R} \longrightarrow \Omega^0(\mathbb{R}^n) \xrightarrow{d} \Omega^1(\mathbb{R}^n) \xrightarrow{d} \dots \xrightarrow{d} \Omega^n(\mathbb{R}^n) \longrightarrow 0,$$

which implies the exact sequence of stalks at each $x \in M$ as M is locally homeomorphic to \mathbb{R}^n . Thus the above sequence of sheaves is an exact sequence of \mathbb{R} -modules.

Suppose \mathcal{A} is a sheaf of rings on X , \mathcal{L} is a right \mathcal{A} -module and \mathcal{M} is a left \mathcal{A} -module. Then we can define the **tensor product** $\mathcal{L} \otimes_{\mathcal{A}} \mathcal{M}$ to be the sheaf of abelian groups on X associated to the presheaf

$$U \mapsto \mathcal{L}(U) \otimes_{\mathcal{A}(U)} \mathcal{M}(U)$$

for each open set $U \subset X$. We can see that $(\mathcal{L} \otimes_{\mathcal{A}} \mathcal{M})_x$ is naturally isomorphic to the tensor product $\mathcal{L}_x \otimes_{\mathcal{A}_x} \mathcal{M}_x$ for each $x \in X$, and that each mid-linear morphism $\mathcal{L} \times \mathcal{M} \rightarrow \mathcal{N}$ of sheaves of abelian groups factors through the canonical mid-linear morphism $\mathcal{L} \times \mathcal{M} \rightarrow \mathcal{L} \otimes_{\mathcal{A}} \mathcal{M}$.

For a continuous map $f : X \rightarrow Y$ between topological spaces, we can also consider the direct image and inverse image of sheaves of modules. Suppose \mathcal{A} is a sheaf of rings on X and \mathcal{M} is an \mathcal{A} -module. Then the direct image $f_* \mathcal{A}$ is a sheaf of rings on Y , and the direct image $f_* \mathcal{M}$, as a sheaf of abelian groups, is canonically a $f_* \mathcal{A}$ -module. We then obtain a functor

$$f_* : \mathcal{A} - \text{Mod} \rightarrow f_* \mathcal{A} - \text{Mod}.$$

Dually, if \mathcal{B} is a sheaf of rings on Y and \mathcal{N} is a \mathcal{B} -module, then the inverse image $f^{-1} \mathcal{B}$ is a sheaf of rings on X , and the inverse image $f^{-1} \mathcal{N}$, as a sheaf of abelian groups, is canonically a $f^{-1} \mathcal{B}$ -module. This yields another functor

$$f^{-1} : \mathcal{B} - \text{Mod} \rightarrow f^{-1} \mathcal{B} - \text{Mod}.$$

Theorem 2.4 Suppose $f : X \rightarrow Y$ is a continuous map, \mathcal{A} is a sheaf of rings on X and \mathcal{B} is a sheaf of rings on Y . Then the functor $f^{-1} : \mathcal{B}\text{-Mod} \rightarrow f^{-1}\mathcal{B}\text{-Mod}$ is exact, and the functor $f_* : \mathcal{A}\text{-Mod} \rightarrow f_*\mathcal{A}\text{-Mod}$ is left exact.

Definition 2.4 (family of support) Suppose X is a topological space. A **family of support** Φ on X is a nonempty collection of closed sets in X such that:

1. if $A, B \in \Phi$, then $A \cup B \in \Phi$;
2. if $A \in \Phi$ and B is a closed subset of A , then $B \in \Phi$.

Suppose X is a topological space, Φ is a family of support on X and \mathcal{F} is a sheaf of abelian groups on X . For each $s \in \Gamma(\mathcal{F}) = \mathcal{F}(X)$, we define the **support** of s , denoted by $\text{supp}(s)$, to the set of points $x \in X$ such that $s_x \neq 0$, where s_x is the corresponding element of s in the stalk \mathcal{F}_x . It is clear that $\text{supp}(s)$ is always a closed set in X . Consider the subset $\Gamma_\Phi(\mathcal{F})$ of $\Gamma(\mathcal{F})$ given by

$$\Gamma_\Phi(\mathcal{F}) = \{s \in \Gamma(\mathcal{F}) \mid \text{supp}(s) \in \Phi\}.$$

We can verify that $\Gamma_\Phi(\mathcal{F})$ is a subgroup of the abelian group $\Gamma(\mathcal{F})$.

Theorem 2.5 Suppose X is a topological space, Φ is a family of support on X . Then the map

$$\mathcal{F} \mapsto \Gamma_\Phi(\mathcal{F})$$

gives a left exact functor

$$\Gamma_\Phi : \text{Sh}(X, \text{Ab}) \rightarrow \text{Ab}.$$

3 Extension and lifting of sections

3.1 Flasque sheaves

Definition 3.1 (flasque sheaf) A sheaf \mathcal{F} on a topological space X is called **flasque** if for each open set $U \subset X$, the restriction morphism

$$\mathcal{F}(X) \rightarrow \mathcal{F}(U)$$

is surjective.

Proposition 3.1 Suppose X is a topological space and \mathcal{F} is a sheaf on X . If for each $x \in X$, there is a neighborhood U of x such that $\mathcal{F}|_U$ is flasque, then \mathcal{F} is flasque.

Proof. Fix an open set $U \subset X$ and a section $s \in \mathcal{F}(U)$. Consider the poset

$$E = \{(U', s') \mid U \subset U' \text{ and } s = s'|_U\},$$

with the partial order given by

$$(U', s') \leq (U'', s'') \iff U' \subset U'' \text{ and } s' = s''|_{U'}.$$

Then E is a nonempty collection satisfying the condition of Zorn's lemma, and then we can find a maximal element $(\tilde{U}, \tilde{s}) \in E$. We claim that $\tilde{U} = X$. Otherwise, there exists a neighborhood V of $x \in X \setminus \tilde{U}$ such that $\mathcal{F}|_V$ is flasque. Then we can find a section $\tilde{s} \in \mathcal{F}(V)$ such that $\tilde{s}|_{\tilde{U} \cap V} = \tilde{s}|_{\tilde{U} \cap V}$. The axiom of sheaf yields a section $\tilde{s}' \in \mathcal{F}(\tilde{U} \cup V)$ such that $\tilde{s}'|_{\tilde{U}} = \tilde{s}$, contradicting the maximality of (\tilde{U}, \tilde{s}) . Thus we have $\tilde{U} = X$, and then $\tilde{s} \in \mathcal{F}(X)$, which shows that \mathcal{F} is flasque. \square

Remark For an element $(U', s') \in E$, we usually call s' a **extension** of s to U' .

By the definition of direct image, we have the following result directly.

Proposition 3.2 Suppose X and Y are topological spaces, $f : X \rightarrow Y$ is a continuous map and \mathcal{F} is a sheaf on X . If \mathcal{F} is flasque, then the direct image sheaf $f_*\mathcal{F}$ is also flasque.

An important result of flasque sheaves is about the exact sequences.

Theorem 3.3 Suppose X is a topological space and

$$0 \rightarrow \mathcal{L} \rightarrow \mathcal{M} \rightarrow \mathcal{N} \rightarrow 0$$

is an exact sequence of sheaves of abelian groups on X . If \mathcal{L} is flasque, then the induced sequence

$$0 \rightarrow \mathcal{L}(U) \rightarrow \mathcal{M}(U) \rightarrow \mathcal{N}(U) \rightarrow 0$$

is exact for each open set $U \subset X$.

Proof. Suppose the morphisms of sheaves are $f : \mathcal{L} \rightarrow \mathcal{M}$ and $g : \mathcal{M} \rightarrow \mathcal{N}$, with induced morphisms \tilde{f} and \tilde{g} . As long as $\Gamma(U, -)$ is left exact, it suffices to show that the morphism $\mathcal{M}(U) \rightarrow \mathcal{N}(U)$ is surjective. Fix a section $t \in \mathcal{N}(U)$. Consider the poset

$$E = \{(V, s) \mid V \subset U \text{ and } \tilde{g}(s) = t|_V\}.$$

The surjectivity of the sheaf morphism $\mathcal{M} \rightarrow \mathcal{N}$ implies that E is nonempty, and it can be verified that E satisfies the condition of Zorn's lemma. Thus there is a maximal element $(\tilde{V}, \tilde{s}) \in E$. We claim that $\tilde{V} = U$. Otherwise, take $x \in U \setminus \tilde{V}$. Since $\mathcal{M}_x \rightarrow \mathcal{N}_x$ is surjective, there exists a section \tilde{s} on a neighborhood W of x such that $\tilde{g}(\tilde{s}) = t|_W$. Then

$$\tilde{g}(\tilde{s}|_{\tilde{V} \cap W} - \tilde{s}|_{\tilde{V} \cap W}) = 0,$$

i.e.

$$\tilde{s}|_{\tilde{V} \cap W} - \tilde{s}|_{\tilde{V} \cap W} \in \ker \tilde{g} = \text{im } \tilde{f}.$$

Suppose

$$\tilde{s}|_{\tilde{V} \cap W} - \tilde{s}|_{\tilde{V} \cap W} = \tilde{f}(u)$$

for some $u \in \mathcal{L}(\tilde{V} \cap W)$. Since \mathcal{L} is flasque, we can extend u to a section $\tilde{u} \in \mathcal{L}(W)$. Then $\tilde{s} \in \mathcal{M}(\tilde{V})$ and $\tilde{s} + \tilde{f}(\tilde{u}) \in \mathcal{M}(W)$ agree on $\tilde{V} \cap W$, which induces a section $\tilde{s}' \in \mathcal{M}(\tilde{V} \cup W)$ such that $\tilde{s}'|_{\tilde{V}} = \tilde{s}$. This contradicts the maximality of (\tilde{V}, \tilde{s}) . Thus we have $\tilde{V} = U$, and hence $\tilde{g}(\tilde{s}) = t$. \square

Remark The section \tilde{s} is usually called a **lifting** of t to \mathcal{M} .

Corollary 3.4 Suppose X is a topological space and

$$0 \rightarrow \mathcal{L} \rightarrow \mathcal{M} \rightarrow \mathcal{N} \rightarrow 0$$

is an exact sequence of sheaves of abelian groups on X . If \mathcal{L} and \mathcal{M} are flasque, then \mathcal{N} is also flasque.

Proof. For each open set $U \subset X$, we have the following commutative diagram with exact rows:

$$\begin{array}{ccccccc} 0 & \longrightarrow & \mathcal{L}(X) & \longrightarrow & \mathcal{M}(X) & \longrightarrow & \mathcal{N}(X) & \longrightarrow 0 \\ & & \downarrow & & \downarrow & & \downarrow & \\ 0 & \longrightarrow & \mathcal{L}(U) & \longrightarrow & \mathcal{M}(U) & \longrightarrow & \mathcal{N}(U) & \longrightarrow 0 \end{array}$$

In particular, Since $\mathcal{M}(X) \rightarrow \mathcal{M}(U)$ and $\mathcal{M}(U) \rightarrow \mathcal{N}(U)$ are surjective, their composition $\mathcal{M}(X) \rightarrow \mathcal{N}(U)$ is also surjective. The surjectivity of $\mathcal{N}(X) \rightarrow \mathcal{N}(U)$ then follows. \square

Theorem 3.5 Suppose

$$0 \rightarrow \mathcal{M}^0 \rightarrow \mathcal{M}^1 \rightarrow \mathcal{M}^2 \rightarrow \dots$$

is an exact sequence of flasque sheaves of abelian groups on a topological space X . Then for each family Φ of support on X , the sequence

$$0 \rightarrow \Gamma_\Phi(\mathcal{M}^0) \rightarrow \Gamma_\Phi(\mathcal{M}^1) \rightarrow \Gamma_\Phi(\mathcal{M}^2) \rightarrow \dots$$

of abelian groups is exact.

Proof. Let

$$\mathcal{Z}^p = \ker(\mathcal{M}^p \rightarrow \mathcal{M}^{p+1}) = \text{im}(\mathcal{M}^{p-1} \rightarrow \mathcal{M}^p)$$

for each $p \geq 0$. Since we have the exact sequence

$$0 \rightarrow \mathcal{Z}^p \rightarrow \mathcal{M}^p \rightarrow \mathcal{M}^{p+1}$$

and Γ_Φ is left exact, the sequence

$$0 \rightarrow \Gamma_\Phi(\mathcal{Z}^p) \rightarrow \Gamma_\Phi(\mathcal{M}^p) \rightarrow \Gamma_\Phi(\mathcal{M}^{p+1})$$

is exact. Thus it suffices to show that

$$0 \rightarrow \Gamma_\Phi(\mathcal{Z}^p) \rightarrow \Gamma_\Phi(\mathcal{M}^p) \rightarrow \Gamma_\Phi(\mathcal{Z}^{p+1}) \rightarrow 0$$

is exact for each $p \geq 0$. We consider the exact sequence

$$0 \rightarrow \mathcal{Z}^p \rightarrow \mathcal{M}^p \rightarrow \mathcal{Z}^{p+1} \rightarrow 0.$$

As Γ_Φ is left exact, we only need to show that $\Gamma_\Phi(\mathcal{M}^p) \rightarrow \Gamma_\Phi(\mathcal{Z}^{p+1})$ is surjective. Since \mathcal{M}^p is flasque, the flasque property of \mathcal{Z}^p implies the flasque property of \mathcal{Z}^{p+1} . As long as $\mathcal{Z}^0 = 0$ is flasque, the induction on p shows that each \mathcal{Z}^p is flasque. Thus $\Gamma(\mathcal{M}^p) \rightarrow \Gamma(\mathcal{Z}^{p+1})$ is surjective. Now take any $t \in \Gamma_\Phi(\mathcal{Z}^{p+1})$, with $\text{supp}(t) = S \in \Phi$. We can lift t to a section $s \in \Gamma(\mathcal{M}^p)$, whose support is not necessarily in Φ . However, $s|_{X \setminus S}$ maps to zero in \mathcal{Z}^{p+1} , implying that $s|_{X \setminus S}$ is a section of \mathcal{Z}^p . Since \mathcal{Z}^p is flasque, we can extend $s|_{X \setminus S}$ to a section $s' \in \Gamma(\mathcal{Z}^p)$. Then $s - s'$ is a section of \mathcal{M}^p with support contained in S , and hence

$$s - s' \in \Gamma_\Phi(\mathcal{M}^p).$$

It is clear that $s - s'$ is a lifting of t in $\Gamma_\Phi(\mathcal{M}^p)$. \square

3.2 Paracompactified family and soft sheaves

A topological space X is called **paracompact** if every open cover of X has a locally finite open refinement. A closed subspace of a paracompact space is also paracompact. A paracompact Hausdorff space is normal.

Lemma 3.6 Suppose X is a paracompact Hausdorff space. If $\{U_i\}_{i \in I}$ is an open cover of X , then there exists a locally finite open refinement $\{V_i\}_{i \in I}$ such that $V_i \subset U_i$ for each $i \in I$.

Lemma 3.7 Suppose X is a normal space. If $\{U_i\}_{i \in I}$ is a locally finite open cover of X , then there exists another locally finite open cover $\{V_i\}_{i \in I}$ such that $\overline{V}_i \subset U_i$ for each $i \in I$.

Corollary 3.8 Suppose X is a paracompact Hausdorff space. Then each open cover $\{U_i\}_{i \in I}$ of X has a locally finite open refinement $\{V_i\}_{i \in I}$ such that $\overline{V}_i \subset U_i$ for each $i \in I$.

Definition 3.2 (paracompactified family) Suppose X is a topological space. A **paracompactified family** Φ on X is a nonempty family of closed subsets of X such that:

1. each $S \in \Phi$ is paracompact and Hausdorff;
2. if $S_1, \dots, S_n \in \Phi$, then $S_1 \cup \dots \cup S_n \in \Phi$;
3. if $S \in \Phi$ and $S' \subset S$ is a closed subset, then $S' \in \Phi$;
4. each $S \in \Phi$ has a neighborhood U such that $\overline{U} \in \Phi$.

If Φ is a family of support on X and Y is a subspace of X , then define $\Phi|_Y$ to be the family of subsets $S \in \Phi$ such that $S \subset Y$. If Y is a closed subset of X , then

$$\Phi|_Y = \{S \cap Y \mid S \in \Phi\}.$$

If Φ is paracompactified and $Y = U \cap F$ with U open and F closed in X , then we can verify that $\Phi|_Y$ is a paracompactified family on Y .

Suppose \mathcal{F} is a sheaf on a topological space X . Then we can actually define sections of \mathcal{F} on any subset Y of X to be continuous maps $s : Y \rightarrow E$ such that $p \circ s$ is the identity map on Y , where (E, p) is the etale space of \mathcal{F} . The restriction morphisms are defined in the natural way.

Theorem 3.9 Suppose \mathcal{F} is a sheaf on a topological space X and $\{Y_i\}_{i \in I}$ is a locally finite closed cover of X . If $s_i \in \mathcal{F}(Y_i)$ are sections such that

$$s_i|_{Y_i \cap Y_j} = s_j|_{Y_i \cap Y_j}, \quad i, j \in I,$$

then there exists a section $s \in \mathcal{F}(X)$ such that $s|_{Y_i} = s_i$ for each $i \in I$.

Proof. Suppose (E, p) is the etale space of \mathcal{F} . It is direct that there exists a map $s : X \rightarrow E$ such that $p \circ s$ is identity on X and $s|_{Y_i} = s_i$ for each $i \in I$. It remains to show that s is continuous. Fix a point $x \in X$. Since $\{Y_i\}_{i \in I}$ is locally finite, there exists a neighborhood U of x such that $U \cap Y_i$ is nonempty for only finitely many $i_1, \dots, i_n \in I$. By shrinking U if necessary, we may assume that x is contained in each Y_{i_k} , and that there exists a section t of \mathcal{F} on U such that

$$t(x) = s(x) = s_{i_1}(x) = \dots = s_{i_n}(x).$$

For each $1 \leq k \leq n$, there exists a neighborhood U_k of x such that t and s_{i_k} agree on $U_k \cap Y_{i_k}$. Let $U' = U_1 \cap \dots \cap U_n$. Then t agrees with s on each $U' \cap Y_{i_k}$, and hence on U' . The continuity of s at x follows. \square

Theorem 3.10 Suppose \mathcal{F} is a sheaf on a topological space X , S is a subset of X and s is a section of \mathcal{F} on S . If S has a fundamental system of neighborhoods consisting of paracompact Hausdorff subsets in X , then s can be extended to a neighborhood of S in X .

Proof. Try to use Theorem 3.9 to glue the sections. \square

Corollary 3.11 Suppose X is a topological space, \mathcal{F} is a sheaf on X and S is a subset of X with a fundamental system of neighborhoods consisting of paracompact Hausdorff subsets in X . Then we have

$$\mathcal{F}(S) = \varinjlim \mathcal{F}(U),$$

where the inductive limit is taken over open neighborhoods U of S in X .

It follows from the above corollary that if X is a paracompact Hausdorff space and \mathcal{F} is a flasque sheaf on X , then each section of \mathcal{F} on a closed subset of X can be extended to the whole space X .

Definition 3.3 (soft sheaf) A sheaf \mathcal{F} on a topological space X is called **soft** if for each closed subset S of X , each section of \mathcal{F} on S can be extended to X .

It is direct that the restriction of a soft sheaf to a closed subset is also soft.

Theorem 3.12 Suppose \mathcal{F} is a sheaf on a paracompact Hausdorff space X . Suppose that for each $x \in X$, there exists a neighborhood U of x such that each section of \mathcal{F} on a subset of U closed in X can be extended to U . Then \mathcal{F} is soft.

Proof. Suppose s is a section of \mathcal{F} on a closed subset S of X . Since X is paracompact Hausdorff, we can take a locally finite open cover $\{U_i\}_{i \in I}$ of X such that each U_i satisfies the extention property stated in the theorem. Then there exists another locally finite open cover $\{V_i\}_{i \in I}$ of X such that

$$F_i := \overline{V}_i \subset U_i$$

for each $i \in I$. For each $J \subset I$, define

$$F_J = \bigcup_{i \in J} F_i.$$

Now consider the poset

$$E = \{(J, t) \mid J \subset I, \text{ and } t \text{ is a section of } \mathcal{F} \text{ on } F_J \text{ such that } t|_{S \cap F_J} = s|_{S \cap F_J}\},$$

with the partial order given by

$$(J, t) \leq (J', t') \iff J \subset J', \text{ and } t = t'|_{F_J}.$$

The extension property on each U_i implies that E is nonempty, and Theorem 3.9 shows that E satisfies the condition of Zorn's lemma. Thus we can find a maximal element $(\tilde{J}, \tilde{t}) \in E$. We claim that $\tilde{J} = I$. Otherwise there exists $i \in I \setminus \tilde{J}$. Let $\tilde{J}' = \tilde{J} \cup \{i\}$. Noting that $s|_{S \cap F_i}$ is a section of \mathcal{F} on $S \cap F_i$, which is a subset of U_i closed in X , we can extend this to a section s' of \mathcal{F} on F_i by the choice of U_i . Theorem 3.9 then implies that there exists a section \tilde{t}' on $F_{\tilde{J}'}$ agreeing with \tilde{t} on $F_{\tilde{J}}$ and with s on $S \cap F_{\tilde{J}'}$. This contradicts the maximality of (\tilde{J}, \tilde{t}) . Thus we have $\tilde{J} = I$, and hence \tilde{t} is a section of \mathcal{F} on X such that $\tilde{t}|_S = s$. \square

Corollary 3.13 Suppose X is a paracompact Hausdorff space and $\{\mathcal{F}_i\}_{i \in I}$ is a locally finite family of sheaves of abelian groups on X . If each \mathcal{F}_i is soft, then their direct sum is also soft.

Proof. The statement is trivial for finite I . We then use the local finiteness and Theorem 3.12 to deal with a general I . \square

Definition 3.4 (Φ -soft sheaf) Suppose X is a topological space and Φ is a paracompactified family on X . A sheaf \mathcal{F} on X is called Φ -soft if for each $S \in \Phi$, $\mathcal{F}|_S$ is soft, i.e., for each $S', S \in \Phi$ with $S' \subset S$, the restriction morphism $\mathcal{F}(S) \rightarrow \mathcal{F}(S')$ is surjective.

Theorem 3.14 Suppose X is a paracompact Hausdorff space, Φ is a paracompactified family on X , and \mathcal{F} is a sheaf of abelian groups on X . Then \mathcal{F} is Φ -soft if and only if for each $S \in \Phi$, the morphism $\Gamma_\Phi(\mathcal{F}) \rightarrow \mathcal{F}(S)$ is surjective.

Proof. If the corresponding morphism is surjective for each $S \in \Phi$, then it is direct that \mathcal{F} is Φ -soft. Conversely, suppose \mathcal{F} is Φ -soft. For each $S \in \Phi$, we can find a neighborhood U of S such that $\overline{U} \in \Phi$. There is a section on $S \cup (\overline{U} \setminus U)$ given by s on S and 0 on $\overline{U} \setminus U$. By the Φ -soft property, we can extend this to a section \tilde{s} on \overline{U} . Taking zero in $X \setminus \overline{U}$, \tilde{s} then extends to the whole space X . It can be seen that the extension belongs to $\Gamma_\Phi(\mathcal{F})$. \square

Theorem 3.15 Suppose X is topological space, Φ is a paracompactified family on X , and

$$0 \rightarrow \mathcal{L} \rightarrow \mathcal{M} \rightarrow \mathcal{N} \rightarrow 0$$

is an exact sequence of sheaves of abelian groups on X . If \mathcal{L} is Φ -soft, then

$$0 \rightarrow \Gamma_\Phi(\mathcal{L}) \rightarrow \Gamma_\Phi(\mathcal{M}) \rightarrow \Gamma_\Phi(\mathcal{N}) \rightarrow 0$$

is an exact sequence of abelian groups.

Proof. First suppose X is paracompact Hausdorff and Φ consists of all closed subsets of X . Using arguments similar to the proofs of Theorem 3.3 and Theorem 3.12, we see that each section of \mathcal{N} on X can be lifted to a section of \mathcal{M} . For a general X and Φ , just consider the support of the section needed to be lifted. \square

Corollary 3.16 Suppose X is a paracompact Hausdorff space and

$$0 \rightarrow \mathcal{L} \rightarrow \mathcal{M} \rightarrow \mathcal{N} \rightarrow 0$$

is an exact sequence of sheaves of abelian groups on X . If \mathcal{L} is soft, then the sequence

$$0 \rightarrow \mathcal{L}(A) \rightarrow \mathcal{M}(A) \rightarrow \mathcal{N}(A) \rightarrow 0$$

is exact for each closed subset A of X .

Analogous to the cases of flasque sheaves, we have the following theorems.

Theorem 3.17 Suppose X is a topological space, Φ is a paracompactified family on X , and

$$0 \rightarrow \mathcal{L} \rightarrow \mathcal{M} \rightarrow \mathcal{N} \rightarrow 0$$

is an exact sequence of sheaves of abelian groups on X . If \mathcal{L} and \mathcal{M} are Φ -soft, then \mathcal{N} is also Φ -soft.

Theorem 3.18 Suppose X is a topological space, Φ is a paracompactified family on X , and

$$0 \rightarrow \mathcal{M}^0 \rightarrow \mathcal{M}^1 \rightarrow \mathcal{M}^2 \rightarrow \dots$$

is an exact sequence of Φ -soft sheaves of abelian groups on X . Then the sequence

$$0 \rightarrow \Gamma_\Phi(\mathcal{M}^0) \rightarrow \Gamma_\Phi(\mathcal{M}^1) \rightarrow \Gamma_\Phi(\mathcal{M}^2) \rightarrow \dots$$

is exact.

A useful result of soft sheaves is the following theorem.

Theorem 3.19 Suppose X is a topological space, Φ is a paracompactified family on X , and \mathcal{A} is a sheaf of rings with identity on X . If \mathcal{A} is Φ -soft, then each \mathcal{A} -module \mathcal{M} is also Φ -soft.

Proof. Suppose s is a section of \mathcal{M} on a closed subset $S \in \Phi$ of X . There exists a neighborhood U of S such that $\overline{U} \in \Phi$. Since \mathcal{A} is Φ -soft, we can take a section u of \mathcal{A} on \overline{U} such that u takes the value 1 on S and 0 on $\overline{U} \setminus U$. Taking zero in $X \setminus \overline{U}$, we can extend the section

$$x \mapsto u(x)s(x)$$

of \mathcal{M} on \overline{U} to the whole space X . \square

4 Sheaf cohomology

A sheaf is always a sheaf of abelian groups without stated in this section.

4.1 Cohomology sheaf of a differential sheaf

Definition 4.1 (graded sheaf) Suppose X is a topological space. A **graded sheaf** on X is a sequence $\mathcal{F}^* = \{\mathcal{F}^n\}_{n \in \mathbb{Z}}$ of sheaves on X , where \mathcal{F}^n is called the **component of degree n** of \mathcal{F}^* .

Suppose T is a functor from $\text{Sh}(X, \text{Ab})$ to Ab (or generally any abelian category), denote by $T(\mathcal{F}^*)$ the graded abelian group $\{T(\mathcal{F}^n)\}_{n \in \mathbb{Z}}$. It is worth noting that $T(\mathcal{F}^*)$ is not necessarily identified canonically with $T(\bigoplus \mathcal{F}^n)$.

For two graded sheaf \mathcal{F}^* and \mathcal{G}^* on X , a **homomorphism of degree r** from \mathcal{F}^* to \mathcal{G}^* is a sequence $f = \{f^n\}_{n \in \mathbb{Z}}$ of morphisms $f^n : \mathcal{F}^n \rightarrow \mathcal{G}^{n+r}$. When $r = 0$, we simply call it a homomorphism from \mathcal{F}^* to \mathcal{G}^* . It can be verified that the graded sheaves on X , together with the homomorphisms, form an abelian category.

Definition 4.2 (differential sheaf) A **differential sheaf** on X is a graded sheaf \mathcal{F}^* together with a homomorphism $d : \mathcal{F}^* \rightarrow \mathcal{F}^*$ of degree r , satisfying $d^2 = 0$. We are mostly concerned with the case $r = 1$.

A homomorphism of differential sheaves is a homomorphism of graded sheaves commuting with the differentials. We can also verify that the differential sheaves on X also form an abelian category.

Suppose \mathcal{F}^* is a differential sheaf on X . Define that

$$\mathcal{Z}^n(\mathcal{F}^*) = \ker(\mathcal{F}^n \xrightarrow{d} \mathcal{F}^{n+1}), \quad \mathcal{B}^n(\mathcal{F}^*) = \text{im}(\mathcal{F}^{n-1} \xrightarrow{d} \mathcal{F}^n), \quad \mathcal{H}^n(\mathcal{F}^*) = \mathcal{Z}^n(\mathcal{F}^*) / \mathcal{B}^n(\mathcal{F}^*).$$

The sheaf $\mathcal{H}^n(\mathcal{F}^*)$ is called the **derived sheaf** (of degree n) of \mathcal{F}^* .

It is noticeable that the concept of differential sheaves and derived sheaves are analogous to cochain complexes and homology groups. Suppose T is an additive functor from $\text{Sh}(X, \text{Ab})$ to Ab . Then for each differential sheaf \mathcal{F}^* , the graded group $T(\mathcal{F}^*)$, together with the differential $T(d) : T(\mathcal{F}^n) \rightarrow T(\mathcal{F}^{n+1})$, is a cochain complex. If T is left exact, then consider the exact sequence

$$0 \rightarrow \mathcal{Z}^n \rightarrow \mathcal{F}^n \xrightarrow{d} \mathcal{F}^{n+1},$$

which yields the exact sequence

$$0 \rightarrow T(\mathcal{Z}^n) \rightarrow T(\mathcal{F}^n) \rightarrow T(\mathcal{F}^{n+1}).$$

We then identify $T(\mathcal{Z}^n)$ with $\mathcal{Z}^n(T(\mathcal{F}^*))$ in a canonical way. If we further have T is exact, then using the exact sequences

$$0 \rightarrow \mathcal{Z}^n \rightarrow \mathcal{F}^n \rightarrow \mathcal{B}^{n+1} \rightarrow 0$$

and

$$0 \rightarrow \mathcal{B}^n \rightarrow \mathcal{Z}^n \rightarrow \mathcal{H}^n \rightarrow 0,$$

we obtain a canonical isomorphism

$$H^n(T(\mathcal{F}^*)) = T(\mathcal{H}^n(\mathcal{F}^*)), \quad n \in \mathbb{Z}.$$

For instance, for each $x \in X$, we have the canonical isomorphism

$$H^n(\mathcal{F}_x^*) = (\mathcal{H}^n(\mathcal{F}^*))_x, \quad n \in \mathbb{Z}.$$

An equivalent definition of the derived sheaves of a differential sheaf \mathcal{F} is as follows. We can see that the sheaves \mathcal{Z}^n and \mathcal{B}^n are generated by the presheaves

$$U \mapsto \mathcal{Z}^n(\mathcal{F}^*(U)), \quad U \mapsto \mathcal{B}^n(\mathcal{F}^*(U)),$$

respectively. Then the derived sheaf $\mathcal{H}^n(\mathcal{F}^*)$ of degree n is generated by the presheaf

$$U \mapsto H^n(\mathcal{F}^*(U)).$$

4.2 Resolution

Now we construct a differential sheaf from a sheaf to define the cohomology of sheaves.

Definition 4.3 (resolution) Suppose X is a topological space and \mathcal{A} is a sheaf on X . A (cohomological) **resolution** is an exact sequence of sheaves

$$0 \rightarrow \mathcal{A} \xrightarrow{j} \mathcal{F}^0 \xrightarrow{d} \mathcal{F}^1 \xrightarrow{d} \mathcal{F}^2 \rightarrow \dots.$$

The associated differential sheaf of resolution is $\mathcal{F}^* = \{\mathcal{F}^n\}_{n \in \mathbb{Z}}$, with $\mathcal{F}^n = 0$ for $n < 0$. We also call \mathcal{F}^* a resolution of \mathcal{A} .

By definition, we see that the derived sheaf of a resolution of \mathcal{A} is given by

$$\mathcal{H}^0(\mathcal{F}^*) = \mathcal{A}; \quad \mathcal{H}^n(\mathcal{F}^*) = 0 \text{ for } n > 0.$$

If T is an additive functor from $\text{Sh}(X, \text{Ab})$ to Ab , then $T(\mathcal{F}^*)$ is a cochain complex, with $T(\mathcal{A})$ embedded canonically into $H^0(T(\mathcal{F}^*))$. If T is left exact, then $T(\mathcal{A})$ is actually isomorphic to $H^0(T(\mathcal{F}^*))$; and if T is further exact, then $T(\mathcal{F}^*)$ is a resolution of $T(\mathcal{A})$.

Suppose \mathcal{A} and \mathcal{B} are two sheaves on X with resolutions \mathcal{F}^* and \mathcal{G}^* , respectively. Suppose $f : \mathcal{A} \rightarrow \mathcal{B}$ is a morphism of sheaves. Then a homomorphism $g : \mathcal{F}^* \rightarrow \mathcal{G}^*$ of differential sheaves is said to be compatible with f if the following diagram commutes:

$$\begin{array}{ccc} \mathcal{A} & \longrightarrow & \mathcal{F}^0 \\ f \downarrow & & \downarrow g \\ \mathcal{B} & \longrightarrow & \mathcal{G}^0 \end{array}$$

For a sheaf \mathcal{A} on X , we can construct a resolution $\mathcal{C}^*(X; \mathcal{A})$ of \mathcal{A} in a canonical way called the Godement resolution. First define $\mathcal{C}^0(X; \mathcal{A})$ to be the sheaf given by

$$U \mapsto \{s : U \rightarrow E \mid p(s(x)) = x \text{ for all } x \in U\},$$

where (E, p) is the etale space of \mathcal{A} and the sections are not necessarily continuous. It is clear that $\mathcal{C}^0(X; \mathcal{A})$ is a flasque sheaf of abelian groups on X , together with a canonical embedding

$$j : \mathcal{A} \rightarrow \mathcal{C}^0(X; \mathcal{A}).$$

Next we define

$$\mathcal{Z}^1(X; \mathcal{A}) = \mathcal{C}^0(X; \mathcal{A}) / \mathcal{A},$$

and then

$$\mathcal{C}^1(X; \mathcal{A}) = \mathcal{C}^0(X; \mathcal{Z}^1(X; \mathcal{A})).$$

This yields another embedding

$$\mathcal{Z}^1(X; \mathcal{A}) \rightarrow \mathcal{C}^1(X; \mathcal{A}).$$

For a general $n \geq 0$, suppose we have defined the sheaves $\mathcal{Z}^n(X; \mathcal{A})$ and $\mathcal{C}^n(X; \mathcal{A})$, with the former embedded in the latter, then we can define

$$\mathcal{Z}^{n+1}(X; \mathcal{A}) = \mathcal{C}^n(X; \mathcal{A}) / \mathcal{Z}^n(X; \mathcal{A}), \quad \mathcal{C}^{n+1}(X; \mathcal{A}) = \mathcal{C}^0(X; \mathcal{Z}^{n+1}(X; \mathcal{A})).$$

This gives us the embedding

$$\mathcal{Z}^{n+1}(X; \mathcal{A}) \rightarrow \mathcal{C}^{n+1}(X; \mathcal{A}).$$

We can see that the sheaves $\mathcal{C}^n(X; \mathcal{A})$, $n \geq 0$ are all flasque.

The differential needs to be defined as well. It is quite direct to define

$$d : \mathcal{C}^n(X; \mathcal{A}) \rightarrow \mathcal{C}^{n+1}(X; \mathcal{A})$$

to be the composition

$$\mathcal{C}^n(X; \mathcal{A}) \rightarrow \mathcal{C}^n(X; \mathcal{A}) / \mathcal{Z}^n(X; \mathcal{A}) = \mathcal{Z}^{n+1}(X; \mathcal{A}) \rightarrow \mathcal{C}^{n+1}(X; \mathcal{A}).$$

This verifies that d is a differential, and that the sequence

$$0 \rightarrow \mathcal{A} \xrightarrow{j} \mathcal{C}^0(X; \mathcal{A}) \xrightarrow{d} \mathcal{C}^1(X; \mathcal{A}) \xrightarrow{d} \dots$$

is exact. Hence $\mathcal{C}^*(X; \mathcal{A})$ is a resolution of \mathcal{A} by flasque sheaves, in other words, a flasque resolution of \mathcal{A} .

Let

$$C^*(X; \mathcal{A}) = \Gamma(\mathcal{C}^*(X; \mathcal{A})), \quad C_\Phi^*(X; \mathcal{A}) = \Gamma_\Phi(\mathcal{C}^*(X; \mathcal{A})),$$

where Φ is a family of support on X .

Theorem 4.1 Suppose X is a topological space, and Φ is a family of support on X . Then the assignments

$$\mathcal{A} \mapsto \mathcal{C}^*(X; \mathcal{A}), \quad \mathcal{A} \mapsto C_\Phi^*(X; \mathcal{A})$$

give exact additive functors from the category of sheaves to the category of differential sheaves and the cochain complexes, respectively. In particular, the functor given by

$$\mathcal{A} \mapsto C^*(X; \mathcal{A})$$

is exact.

Proof. Consider the exact sequence of sheaves

$$0 \rightarrow \mathcal{A} \rightarrow \mathcal{B} \rightarrow \mathcal{C} \rightarrow 0.$$

For each open set $U \subset X$, we have the exact sequence

$$0 \rightarrow \prod_{x \in U} \mathcal{A}_x \rightarrow \prod_{x \in U} \mathcal{B}_x \rightarrow \prod_{x \in U} \mathcal{C}_x \rightarrow 0,$$

which implies the exactness

$$0 \rightarrow \mathcal{C}^0(X; \mathcal{A}) \rightarrow \mathcal{C}^0(X; \mathcal{B}) \rightarrow \mathcal{C}^0(X; \mathcal{C}) \rightarrow 0.$$

Noting that we have the commutative diagram with exact rows

$$\begin{array}{ccccccc} 0 & \longrightarrow & \mathcal{A} & \longrightarrow & \mathcal{B} & \longrightarrow & \mathcal{C} & \longrightarrow 0 \\ & & \downarrow & & \downarrow & & \downarrow \\ 0 & \longrightarrow & \mathcal{C}^0(X; \mathcal{A}) & \longrightarrow & \mathcal{C}^0(X; \mathcal{B}) & \longrightarrow & \mathcal{C}^0(X; \mathcal{C}) & \longrightarrow 0 \end{array}$$

and that the morphism $\mathcal{C} \rightarrow \mathcal{C}^0(X; \mathcal{C})$ is injective, the snake lemma yields the exact sequence

$$0 \rightarrow \mathcal{Z}^1(X; \mathcal{A}) \rightarrow \mathcal{Z}^1(X; \mathcal{B}) \rightarrow \mathcal{Z}^1(X; \mathcal{C}) \rightarrow 0.$$

Doing this inductively, we obtain the exactness of the functor $\mathcal{C}^*(X; -)$. Theorem 3.5 then suggests that the functor $C_\Phi^*(X; -)$ is also exact. \square

4.3 Cohomology groups of a sheaf

Definition 4.4 (cohomology of a sheaf) Suppose X is a topological space, Φ is a family of support on X and \mathcal{A} is a sheaf on X . The **cohomology group** (of degree n) of \mathcal{A} with respect to Φ is defined to be

$$H_\Phi^n(X; \mathcal{A}) = H^n(C_\Phi^*(X; \mathcal{A})) = H^n(\Gamma_\Phi(\mathcal{C}^*(X; \mathcal{A}))).$$

In particular, when Φ consists of all closed subsets of X , let

$$H^n(X; \mathcal{A}) = H^n(C^*(X; \mathcal{A})) = H^n(\Gamma(C^*(X; \mathcal{A}))).$$

For a morphism $f : \mathcal{A} \rightarrow \mathcal{B}$, a homomorphism of groups

$$f^* : H_\Phi^n(X; \mathcal{A}) \rightarrow H_\Phi^n(X; \mathcal{B})$$

is induced for each $n \geq 0$. We then see that $H_\Phi^n(X; -)$ is a functor for each n .

Proposition 4.2 Suppose X is a topological space and Φ is a family of support on X . Then the functors

$$\Gamma_\Phi : \text{Sh}(X, \text{Ab}) \rightarrow \text{Ab}, \quad H_\Phi^0(X, -) : \text{Sh}(X, \text{Ab}) \rightarrow \text{Ab}$$

are naturally isomorphic.

Proof. For a sheaf \mathcal{A} , consider the exact sequence

$$0 \rightarrow \mathcal{A} \rightarrow \mathcal{C}^0(X; \mathcal{A}) \rightarrow \mathcal{C}^1(X; \mathcal{A}).$$

Since Γ_Φ is left exact, we have another exact sequence

$$0 \rightarrow \Gamma_\Phi(\mathcal{A}) \rightarrow C_\Phi^0(X; \mathcal{A}) \rightarrow C_\Phi^1(X; \mathcal{A}),$$

which implies the desired natural isomorphism. \square

Theorem 4.3 Suppose X is a topological space, Φ is a family of support on X , and

$$0 \rightarrow \mathcal{A} \xrightarrow{f} \mathcal{B} \xrightarrow{g} \mathcal{C} \rightarrow 0$$

is an exact sequence of sheaves on X . Then we have the long exact sequence

$$\begin{aligned} 0 \rightarrow \Gamma_\Phi(\mathcal{A}) &\xrightarrow{f^*} \Gamma_\Phi(\mathcal{B}) \xrightarrow{g^*} \Gamma_\Phi(\mathcal{C}) \xrightarrow{\delta} H_\Phi^1(X; \mathcal{A}) \xrightarrow{f^*} H_\Phi^1(X; \mathcal{B}) \xrightarrow{g^*} H_\Phi^1(X; \mathcal{C}) \rightarrow \dots \\ \dots &\rightarrow H_\Phi^{n-1}(X; \mathcal{C}) \xrightarrow{\delta} H_\Phi^n(X; \mathcal{A}) \xrightarrow{f^*} H_\Phi^n(X; \mathcal{B}) \xrightarrow{g^*} H_\Phi^n(X; \mathcal{C}) \xrightarrow{\delta} H_\Phi^{n+1}(X; \mathcal{A}) \rightarrow \dots. \end{aligned}$$

Moreover, the connecting homomorphism

$$\delta : H_\Phi^n(X; \mathcal{C}) \rightarrow H_\Phi^{n+1}(X; \mathcal{A})$$

is natural, in the sense that if we have the commutative diagram with exact rows

$$\begin{array}{ccccccc} 0 & \longrightarrow & \mathcal{A} & \longrightarrow & \mathcal{B} & \longrightarrow & \mathcal{C} & \longrightarrow 0 \\ & & \downarrow & & \downarrow & & \downarrow & \\ 0 & \longrightarrow & \mathcal{A}' & \longrightarrow & \mathcal{B}' & \longrightarrow & \mathcal{C}' & \longrightarrow 0 \end{array}$$

then the following diagram commutes

$$\begin{array}{ccc} H_\Phi^n(X; \mathcal{C}) & \xrightarrow{\delta} & H_\Phi^{n+1}(X; \mathcal{A}) \\ \downarrow & & \downarrow \\ H_\Phi^n(X; \mathcal{C}') & \xrightarrow{\delta'} & H_\Phi^{n+1}(X; \mathcal{A}') \end{array}$$

Proof. Just consider the exact sequence of cochain complexes

$$0 \rightarrow C_\Phi^*(X; \mathcal{A}) \rightarrow C_\Phi^*(X; \mathcal{B}) \rightarrow C_\Phi^*(X; \mathcal{C}) \rightarrow 0.$$

□

Corollary 4.4 Suppose X is a topological space, Φ is a family of support on X , and

$$0 \rightarrow \mathcal{A} \rightarrow \mathcal{B} \rightarrow \mathcal{C} \rightarrow 0$$

is an exact sequence of sheaves on X . If $H_\Phi^1(X; \mathcal{A}) = 0$, then the correspondence sequence

$$0 \rightarrow \Gamma_\Phi(X; \mathcal{A}) \rightarrow \Gamma_\Phi(X; \mathcal{B}) \rightarrow \Gamma_\Phi(X; \mathcal{C}) \rightarrow 0$$

is exact.

Theorem 4.5 Suppose X is a topological space, Φ is a family of support on X , and \mathcal{A} is a sheaf on X . Then

$$H_\Phi^n(X; \mathcal{A}) = 0, \quad n \geq 1$$

if one of the followings verifies:

1. \mathcal{A} is flasque;
2. Φ is paracompactified and \mathcal{A} is Φ -soft.

Proof. Consider the exact sequence

$$0 \rightarrow \mathcal{A} \rightarrow \mathcal{C}^0(X; \mathcal{A}) \rightarrow \mathcal{C}^1(X; \mathcal{A}) \rightarrow \dots$$

Using theorem 3.5 if the first condition verifies and theorem 3.18 if the second, we see that the sequence

$$0 \rightarrow \Gamma_\Phi(\mathcal{A}) \rightarrow \mathcal{C}_\Phi^0(X; \mathcal{A}) \rightarrow \mathcal{C}_\Phi^1(X; \mathcal{A}) \rightarrow \dots$$

is exact, implying that the higher cohomology groups are all trivial. \square

As the Godement resolution is not always easy to compute, we try to determine the cohomology groups using other resolutions.

Suppose X is a topological space, Φ is a family of support on X and \mathcal{F}^* is a differential sheaf on X . Consider the bigraded group

$$K = K(\mathcal{F}^*) = \left\{ \mathcal{C}_\Phi^p(X; \mathcal{F}^q) \right\}.$$

We can make this into a double complex by taking differentials

$$d' : \mathcal{C}_\Phi^p(X; \mathcal{F}^q) \rightarrow \mathcal{C}_\Phi^{p+1}(X; \mathcal{F}^q)$$

given by the Godement resolution and

$$d'' : \mathcal{C}_\Phi^p(X; \mathcal{F}^q) \rightarrow \mathcal{C}_\Phi^p(X; \mathcal{F}^{q+1})$$

induced from the differential of \mathcal{F}^* , up to $(-1)^p$, which satisfies

$$d' d'' + d'' d' = 0.$$

Then $d = d' + d''$ defines a differential on the total complex K_{tot} , which is given by

$$K_{\text{tot}}^n = \sum_{p+q=n} \mathcal{C}_\Phi^p(X; \mathcal{F}^q).$$

Now consider the spectral sequences given by K :

$${}^I E_2^{p,q} = H_{d'}^p(H_{d''}^q(K)), \quad {}^{II} E_2^{p,q} = H_{d''}^p(H_{d'}^q(K)).$$

Since \mathcal{C}_Φ^p is exact, we see that

$$(H_{d''}^q(K))^p = H^q(K^{p,*}) = H^q(\mathcal{C}_\Phi^p(X; \mathcal{F}^*)) = \mathcal{C}_\Phi^p(X; \mathcal{H}^q(\mathcal{F}^*)),$$

and hence

$${}^I E_2^{p,q} = H^p(\mathcal{C}_\Phi^*(X; \mathcal{H}^q(\mathcal{F}^*))) = H_\Phi^p(X; \mathcal{H}^q(\mathcal{F}^*)).$$

At the same time,

$$(H_{d'}^q(K))^p = H^q(K^{*,p}) = H^q(\mathcal{C}_\Phi^*(X; \mathcal{F}^p)) = H_\Phi^q(X; \mathcal{F}^p),$$

implying that

$${}^{II} E_2^{p,q} = H^p(H_\Phi^q(X; \mathcal{F}^*)).$$

Since $K^{p,q} = 0$ for $p < 0$, the second filtration of K , given by

$${}^{II} K^p = \sum_{i \in \mathbb{Z}, j \geq p} K^{i,j},$$

is regular, meaning that for each $n \in \mathbb{Z}$, there exists p_n such that

$$K_{\text{tot}}^n \cap {}^H K^p = 0, \quad p \geq p_n.$$

Noting that

$${}^H E_2^{p,0} = H^p(H_\Phi^0(X; \mathcal{F}^*)) = H^p(\Gamma_\Phi(X; \mathcal{F}^*))$$

in a canonical way, we have the induced homomorphism

$$H^p(\Gamma_\Phi(\mathcal{F}^*)) \rightarrow H^p(K_{\text{tot}}^*).$$

When ${}^H E_2^{p,q} = 0$ for $q > 0$, then the above homomorphism is actually isomorphism. Consider the convergence of the spectral sequence given by the first filtration, we obtain the following theorem.

Theorem 4.6 Suppose X is a topological space, Φ is a family of support on X , and \mathcal{F}^* is a differential sheaf on X . Suppose the complexes $H_\Phi^q(X; \mathcal{F}^*)$ are exact for $q > 0$, then we have the convergence of the spectral sequence

$$E_2^{p,q} = H_\Phi^p(X; \mathcal{H}^q(\mathcal{F}^*)) \Rightarrow H^{p+q}(\Gamma_\Phi(\mathcal{F}^*)).$$

Now consider a resolution of a sheaf \mathcal{A} on X :

$$0 \rightarrow \mathcal{A} \rightarrow \mathcal{F}^0 \rightarrow \mathcal{F}^1 \rightarrow \dots.$$

The corresponding double complex $K(\mathcal{F}^*)$ then concentrates in the first quadrant. We have the injective homomorphisms of chain complexes

$$C_\Phi^*(X; \mathcal{A}) \rightarrow K_{\text{tot}}^* \leftarrow \Gamma_\Phi(\mathcal{F}^*),$$

which induces homomorphisms of cohomology groups

$$H_\Phi^n(X; \mathcal{A}) \rightarrow H^n(K_{\text{tot}}^*) \leftarrow H^n(\Gamma_\Phi(\mathcal{F}^*)).$$

These can be identified with the homomorphisms given by the spectral sequences

$${}^I E_2^{n,0} \rightarrow H^n(K_{\text{tot}}^*) \leftarrow {}^H E_2^{n,0},$$

since we can identify \mathcal{A} with $\mathcal{H}^0(\mathcal{F}^*)$ and $\Gamma_\Phi(\mathcal{F}^*)$ with $H_\Phi^0(X; \mathcal{F}^*)$. Since \mathcal{F}^* is a resolution of \mathcal{A} , we have $\mathcal{H}^q(\mathcal{F}^*) = 0$ for $q > 0$, and hence

$${}^I E_2^{p,q} = H_\Phi^p(X; \mathcal{H}^q(\mathcal{F}^*)) = 0, \quad q > 0.$$

Hence the homomorphism $H_\Phi^n(X; \mathcal{A}) \rightarrow H^n(K_{\text{tot}}^*)$ is actually bijective. We then obtain a homomorphism

$$H^n(\Gamma_\Phi(\mathcal{F}^*)) \rightarrow H_\Phi^n(X; \mathcal{A}).$$

Acturally, this result can be viewed as a special case for the following convergence of the spectral sequence given by the second filtration

$${}^H E_2^{p,q} = H^p(H_\Phi^q(X; \mathcal{F}^*)) \Rightarrow H_\Phi^{p+q}(X; \mathcal{A}).$$

Together with the convergence of the spectral sequence given by the first filtration (theorem 4.6), we obtain the following isomorphism.

Theorem 4.7 Suppose X is a topological space, Φ is a family of support on X , and \mathcal{F}^* is a resolution of a sheaf \mathcal{A} on X . If $H_\Phi^q(X; \mathcal{F}^*)$ is exact for $q > 0$, then the canonical homomorphism

$$H^n(\Gamma_\Phi(\mathcal{F}^*)) \rightarrow H_\Phi^n(X; \mathcal{A})$$

is bijective.

Corollary 4.8 Suppose X is a topological space, Φ is a family of support on X , and \mathcal{F}^* is a resolution of a sheaf \mathcal{A} on X . Then we have the canonical isomorphism

$$H_\Phi^n(X; \mathcal{A}) = H^n(\Gamma_\Phi(\mathcal{F}^*)),$$

if one of the followings verifies:

1. \mathcal{F}^q is flasque for each q ;
2. Φ is paracompactified and \mathcal{F}^q is Φ -soft for each q .

Example 4.1 Suppose M is an n -dimensional smooth manifold. They we have the resolution of $\underline{\mathbb{R}}$ on M given by

$$0 \rightarrow \underline{\mathbb{R}} \rightarrow \Omega^0 \rightarrow \Omega^1 \rightarrow \dots.$$

Suppose Φ is a paracompactified family on M . Since C_M^∞ is a Φ -soft sheaf of rings, theorem 3.19 implies that Ω^p is Φ -soft for each p . Thus we have the isomorphism

$$H_\Phi^n(M; \underline{\mathbb{R}}) = H^n(\Gamma_\Phi(\Omega^*)) = H_{\mathrm{dR}, \Phi}^n(M).$$

The homomorphism from $H^n(\Gamma_\Phi(\mathcal{F}^*))$ to $H_\Phi^n(X; \mathcal{A})$ is actually canonical. This is what the following theorem means.

Theorem 4.9 Suppose X is a topological space, Φ is a family of support on X , and \mathcal{F}^* and \mathcal{G}^* are resolutions of the sheaves \mathcal{A} and \mathcal{B} on X , respectively. If $f : \mathcal{A} \rightarrow \mathcal{B}$ is a morphism of sheaf and $g : \mathcal{F}^* \rightarrow \mathcal{G}^*$ is compatible with f , then the following diagram commutes:

$$\begin{array}{ccc} H^n(\Gamma_\Phi(\mathcal{F}^*)) & \longrightarrow & H_\Phi^n(X; \mathcal{A}) \\ g^* \downarrow & & \downarrow f^* \\ H^n(\Gamma_\Phi(\mathcal{G}^*)) & \longrightarrow & H_\Phi^n(X; \mathcal{B}) \end{array}$$

The homomorphism also commutes with the connecting homomorphism of a long exact sequence.

Theorem 4.10 Suppose X is a topological space, Φ is a paracompactified family on X , and $\mathcal{F}^*, \mathcal{G}^*, \mathcal{K}^*$ are resolutions of the sheaves $\mathcal{A}, \mathcal{B}, \mathcal{C}$ on X respectively. If we have the commutative diagram of exact sequences

$$\begin{array}{ccccccc} 0 & \longrightarrow & \mathcal{A} & \longrightarrow & \mathcal{B} & \longrightarrow & \mathcal{C} & \longrightarrow 0 \\ & & \downarrow & & \downarrow & & \downarrow & \\ 0 & \longrightarrow & \mathcal{F}^* & \longrightarrow & \mathcal{G}^* & \longrightarrow & \mathcal{K}^* & \longrightarrow 0 \end{array}$$

and the corresponding sequence

$$0 \rightarrow \Gamma_\Phi(\mathcal{F}^q) \rightarrow \Gamma_\Phi(\mathcal{G}^q) \rightarrow \Gamma_\Phi(\mathcal{K}^q) \rightarrow 0$$

is exact for each q , then the following diagram commutes:

$$\begin{array}{ccc} H^n(\Gamma_\Phi(\mathcal{K}^*)) & \longrightarrow & H_\Phi^n(X; \mathcal{C}) \\ \tilde{\delta} \downarrow & & \downarrow \delta \\ H^{n+1}(\Gamma_\Phi(\mathcal{F}^*)) & \longrightarrow & H_\Phi^{n+1}(X; \mathcal{A}) \end{array}$$

4.4 Characterisation of cohomology groups

An interesting thing about the cohomology groups is that they can be determined (up to a natural isomorphism) by some of their properties.

Theorem 4.11 Suppose X is a topological space, Φ is a family of support on X , and

$$F^n : \text{Sh}(X, \text{Ab}) \rightarrow \text{Ab}, \quad n = 0, 1, \dots$$

are functors satisfying the following properties:

1. there is a natural isomorphism

$$\alpha : \Gamma_\Phi \rightarrow F^0;$$

2. for each exact sequence

$$0 \rightarrow \mathcal{A} \xrightarrow{f} \mathcal{B} \xrightarrow{g} \mathcal{C} \rightarrow 0$$

of sheaves on X , we have a natural connecting homomorphism

$$\delta : F^n(\mathcal{C}) \rightarrow F^{n+1}(\mathcal{A})$$

yielding the following long exact sequence:

$$\begin{aligned} 0 \rightarrow F^0(\mathcal{A}) &\xrightarrow{f^*} F^1(\mathcal{B}) \xrightarrow{g^*} F^2(\mathcal{C}) \xrightarrow{\delta} F^1(X; \mathcal{A}) \rightarrow \dots \\ &\dots \rightarrow F^{n-1}(X; \mathcal{C}) \xrightarrow{\delta} F^n(X; \mathcal{A}) \xrightarrow{f^*} F^n(X; \mathcal{B}) \xrightarrow{g^*} F^n(X; \mathcal{C}) \xrightarrow{\delta} F^{n+1}(X; \mathcal{A}) \rightarrow \dots; \end{aligned}$$

3. we have

$$F^n(\mathcal{A}) = 0, \quad n \geq 1$$

whenever \mathcal{A} is flasque.

Then there exist natural isomorphisms

$$T^n : H_\Phi^n(X; -) \rightarrow F^n$$

compatible with connecting homomorphisms.

Proof. First we have a natural isomorphism

$$T^0 : H_\Phi^0(X; -) \rightarrow F^0$$

given by α and the natural isomorphism from Γ_Φ to $H_\Phi^0(X; -)$. Next we try to construct the natural isomorphisms inductively. Consider the exact sequence of sheaves

$$0 \rightarrow \mathcal{A} \rightarrow \mathcal{C}^0(X; \mathcal{A}) \rightarrow \mathcal{Z}^1(X; \mathcal{A}) \rightarrow 0.$$

Then we have the commutative diagram of exact sequences:

$$\begin{array}{ccccccc}
0 & \longrightarrow & \Gamma_\Phi(\mathcal{A}) & \longrightarrow & C_\Phi^0(X; \mathcal{A}) & \longrightarrow & \Gamma_\Phi(\mathcal{Z}^1(X; \mathcal{A})) \longrightarrow H_\Phi^1(X; \mathcal{A}) \longrightarrow H_\Phi^1(X; C^0(X; \mathcal{A})) \\
& & \downarrow & & \downarrow & & \downarrow \\
0 & \longrightarrow & F^0(\mathcal{A}) & \longrightarrow & F^0(C^0(X; \mathcal{A})) & \longrightarrow & F^0(\mathcal{Z}^1(X; \mathcal{A})) \longrightarrow F^1(\mathcal{A}) \longrightarrow F^1(C^0(X; \mathcal{A}))
\end{array}$$

The vertical arrows are given by α , and since $\mathcal{X}^0(X; \mathcal{A})$ is flasque, it is true that

$$H_\Phi^1(X; C^0(X; \mathcal{A})) = F^1(C^0(X; \mathcal{A})) = 0.$$

Therefore there is an isomorphism

$$T^1(\mathcal{A}) : H_\Phi^1(X; \mathcal{A}) \rightarrow F^1(\mathcal{A})$$

making the diagram commute. For a morphism $f : \mathcal{A} \rightarrow \mathcal{B}$, consider the commutative diagram

$$\begin{array}{ccccccc}
0 & \longrightarrow & \mathcal{A} & \longrightarrow & C_\Phi^0(X; \mathcal{A}) & \longrightarrow & \mathcal{Z}^1(X; \mathcal{A}) \longrightarrow 0 \\
& & \downarrow & & \downarrow & & \downarrow \\
0 & \longrightarrow & \mathcal{B} & \longrightarrow & C_\Phi^0(X; \mathcal{B}) & \longrightarrow & \mathcal{Z}^1(X; \mathcal{B}) \longrightarrow 0
\end{array}$$

which actually implies the naturality of T^1 . It is clear that T^1 commutes with the connecting homomorphisms. Suppose we have constructed the natural isomorphism

$$T^n : H_\Phi^n(X; -) \rightarrow F^n,$$

with $n \geq 1$, commuting with connecting homomorphisms. We have the commutative diagram of exact sequences:

$$\begin{array}{ccccccc}
H_\Phi^n(X; C^0(X; \mathcal{A})) & \longrightarrow & H_\Phi^n(\mathcal{Z}^1(X; \mathcal{A})) & \longrightarrow & H_\Phi^{n+1}(X; \mathcal{A}) & \longrightarrow & H_\Phi^{n+1}(X; C^0(X; \mathcal{A})) \\
& & \downarrow T^n & & & & \\
F^n(C^0(X; \mathcal{A})) & \longrightarrow & F^n(\mathcal{Z}^1(X; \mathcal{A})) & \longrightarrow & F^{n+1}(\mathcal{A}) & \longrightarrow & F^{n+1}(C^0(X; \mathcal{A}))
\end{array}$$

The flasque property of $C^0(X; \mathcal{A})$ implies that

$$H_\Phi^n(X; C^0(X; \mathcal{A})) = F^n(C^0(X; \mathcal{A})) = H_\Phi^{n+1}(X; C^0(X; \mathcal{A})) = F^{n+1}(C^0(X; \mathcal{A})) = 0.$$

We then obtain an isomorphism

$$T^{n+1}(\mathcal{A}) : H_\Phi^{n+1}(X; \mathcal{A}) \rightarrow F^{n+1}(\mathcal{A}).$$

The naturality and the commutativity with the connecting homomorphisms of T^{n+1} are both direct from our construction. \square

5 Čech cohomology

Through this section, we consider presheaves and sheaves of abelian groups on a fixed topological space X . If \mathcal{A} is a presheaf, we always suppose that $\mathcal{A}(\emptyset) = 0$.

5.1 Cohomology with respect to an open cover

Suppose \mathcal{A} is a presheaf on X and $\mathfrak{U} = \{U_i\}_{i \in I}$ is an open cover of X . For a subset $s = \{i_0, \dots, i_p\}$ of I , define

$$U_s = U_{i_0 \dots i_p} = U_{i_0} \cap \dots \cap U_{i_p}.$$

Let

$$C^p(\mathfrak{U}; \mathcal{A}) = \prod_{\substack{s = \{i_0, \dots, i_p\} \subset I \\ U_s \neq \emptyset}} \mathcal{A}(U_s)$$

be the group of \mathcal{A} -valued cochains of degree p of \mathfrak{U} . A cochain $\alpha \in C^p(\mathfrak{U}; \mathcal{A})$ has the form

$$\alpha = (\alpha_{i_0 \dots i_p})_{i_0, \dots, i_p \in I},$$

with

$$\alpha_{i_0 \dots i_p} \in \mathcal{A}(U_{i_0 \dots i_p}).$$

Define the differential

$$d : C^p(\mathfrak{U}; \mathcal{A}) \rightarrow C^{p+1}(\mathfrak{U}; \mathcal{A})$$

by

$$(d\alpha)_{i_0 \dots i_{p+1}} = \sum_{k=0}^{p+1} (-1)^k \alpha_{i_0 \dots \hat{i}_k \dots i_{p+1}}|_{U_{i_0 \dots i_{p+1}}}.$$

This is similar to the differential of a singular cochain. We denote the cohomology group of $C^*(\mathfrak{U}; \mathcal{A})$ of degree n by $H^n(\mathfrak{U}; \mathcal{A})$.

For a morphism $f : \mathcal{A} \rightarrow \mathcal{B}$ of presheaves, we have a induced cochain homomorphism $C^*(\mathfrak{U}; \mathcal{A}) \rightarrow C^*(\mathfrak{U}; \mathcal{B})$ and then a homomorphism

$$f^* : H^n(\mathfrak{U}; \mathcal{A}) \rightarrow H^n(\mathfrak{U}; \mathcal{B})$$

for each $n \geq 0$.

Consider an open cover $\mathfrak{U} = \{U_i\}_{i \in I}$ of X and an open subset $V \subset X$. Then the family of open sets given by $\mathfrak{U} \cap V = \{U_i \cap V\}_{i \in I}$ is an open cover of V . We take the notation that

$$C^*(\mathfrak{U} \cap V; \mathcal{A}) = C^*(\mathfrak{U} \cap V; \mathcal{A}|_V).$$

For each open sets $W \subset V \subset X$, the restriction of sections induces a morphism

$$C^*(\mathfrak{U} \cap V; \mathcal{A}) \rightarrow C^*(\mathfrak{U} \cap W; \mathcal{A}).$$

It follows that the assignment

$$V \mapsto C^n(\mathfrak{U} \cap V; \mathcal{A})$$

gives a presheaf on \mathcal{A} , denoted by $\mathcal{C}^n(\mathfrak{U}; \mathcal{A})$. We then also obtain a differential presheaf

$$\mathcal{C}^*(\mathfrak{U}; \mathcal{A}) = \{\mathcal{C}^n(\mathfrak{U}; \mathcal{A})\}_{n \geq 0}.$$

If \mathcal{A} is a sheaf, then each $\mathcal{C}^n(\mathfrak{U}; \mathcal{A})$ is a sheaf and $\mathcal{C}^*(\mathfrak{U}; \mathcal{A})$ is a differential sheaf. We can see that

$$C^*(\mathfrak{U}; \mathcal{A}) = \Gamma(\mathcal{C}^*(\mathfrak{U}; \mathcal{A})),$$

which inspires us to define

$$C_\Phi^*(\mathfrak{U}; \mathcal{A}) = \Gamma_\Phi(\mathcal{C}^*(\mathfrak{U}; \mathcal{A})),$$

where Φ is a family of support on X . The cohomology groups of $C_\Phi^*(\mathfrak{U}; \mathcal{A})$ are denoted by $H_\Phi^n(\mathfrak{U}; \mathcal{A})$, with $n \geq 0$.

Note that we have a sheaf morphism

$$j : \mathcal{A} \rightarrow \mathcal{C}^0(\mathfrak{U}; \mathcal{A})$$

given by

$$j(\alpha)_i = \alpha|_{U_i \cap V}, \quad \alpha \in \mathcal{A}(V), i \in I.$$

The axiom of sheaf implies that j is injective with $\text{im}(j) = \text{ker}(d)$.

Theorem 5.1 Suppose X is a topological space and \mathfrak{U} is an open cover of X . Then for each sheaf \mathcal{A} on X the following sequence is exact

$$0 \rightarrow \mathcal{A} \xrightarrow{j} \mathcal{C}^0(\mathfrak{U}; \mathcal{A}) \xrightarrow{d} \mathcal{C}^1(\mathfrak{U}; \mathcal{A}) \xrightarrow{d} \mathcal{C}^2(\mathfrak{U}; \mathcal{A}) \rightarrow \dots,$$

i.e., $\mathcal{C}^*(\mathfrak{U}; \mathcal{A})$ is a resolution of \mathcal{A} .

Proof. We have shown the exactness at \mathcal{A} and $\mathcal{C}^0(\mathfrak{U}; \mathcal{A})$, so it remains to show $\text{im}(d) = \text{ker}(d)$ for $n > 0$. Consider $x \in X$ and a germ in $\text{ker}(d)$ defined by $\alpha \in C^n(\mathfrak{U} \cap V; \mathcal{A})$, where V is a neighborhood of x . Since \mathfrak{U} is an open cover, we may assume $V \subset U_k$ for some index $j \in I$. Then

$$V \cap U_{j i_0 \dots i_{n-1}} = V \cap U_{i_0 \dots i_{n-1}}$$

for any $i_0, \dots, i_{n-1} \in I$. Define $\beta \in C^{n-1}(\mathfrak{U} \cap V; \mathcal{A})$ by

$$\beta_{i_0 \dots i_{n-1}} = \alpha_{j i_0 \dots i_{n-1}}, \quad i_0, \dots, i_{n-1} \in I.$$

Since $d\alpha = 0$, we have

$$0 = (d\alpha)_{j i_0 \dots i_n} = \alpha_{i_0 \dots i_n} - \sum_{k=0}^n (-1)^k \alpha_{j i_0 \dots \hat{i}_k \dots i_n},$$

implying that

$$(d\beta)_{i_0 \dots i_n} = \sum_{k=0}^n (-1)^k \beta_{i_0 \dots \hat{i}_k \dots i_n} = \sum_{k=0}^n (-1)^k \alpha_{j i_0 \dots \hat{i}_k \dots i_n} = \alpha_{i_0 \dots i_n}.$$

It follows that $\alpha = d\beta$ and the exactness at $\mathcal{C}^n(\mathfrak{U}; \mathcal{A})$ follows. \square

Corollary 5.2 Suppose \mathfrak{U} is an open cover of a topological space X and Φ is a family of support on X . Then for each sheaf \mathcal{A} on X , we have the canonical isomorphism

$$H_\Phi^0(\mathfrak{U}; \mathcal{A}) = \Gamma_\Phi(\mathcal{A}) = H_\Phi^0(X; \mathcal{A}).$$

Proof. Consider the exact sequence

$$0 \rightarrow \mathcal{A} \rightarrow \mathcal{C}^0(\mathfrak{U}; \mathcal{A}) \rightarrow \mathcal{C}^1(\mathfrak{U}; \mathcal{A}).$$

Since Γ_Φ is left exact, we have the exact sequence

$$0 \rightarrow \Gamma_\Phi(\mathcal{A}) \rightarrow \mathcal{C}_\Phi^0(\mathfrak{U}; \mathcal{A}) \rightarrow \mathcal{C}_\Phi^1(\mathfrak{U}; \mathcal{A}).$$

It follows that $H_\Phi^0(\mathfrak{U}; \mathcal{A})$ is isomorphic to $\Gamma_\Phi(\mathcal{A})$ canonically. \square

Theorem 5.3 Suppose \mathfrak{U} is an open cover of a topological space X , Φ is a family of support on X , and \mathcal{A} is a sheaf on X . If \mathcal{A} is flasque, then

$$H_{\Phi}^n(\mathfrak{U}; \mathcal{A}) = 0, \quad n \geq 1.$$

Proof. By theorem 5.1 and 3.5, it remains to verify the flasque property for each $C^n(\mathfrak{U}; \mathcal{A})$, which is direct from the definition. \square

Applying the results in section 4.3, we obtain a canonical homomorphism

$$H_{\Phi}^*(\mathfrak{U}; \mathcal{A}) \rightarrow H_{\Phi}^*(X; \mathcal{A})$$

for each open cover \mathfrak{U} of X , each family of support Φ and each sheaf \mathcal{A} on X .

5.2 Relations between the cohomology with respect to an open cover and that of the whole space

Suppose \mathfrak{U} is an open cover of a topological space X and $\mathcal{F}^* = \{\mathcal{F}^n\}$ is a differential sheaf on X . As shown in section 4.3, we can consider the double complex

$$K = K(\mathfrak{U}; \mathcal{F}^*) = \{C^p(\mathfrak{U}; \mathcal{F}^q)\},$$

with the differentials

$$d' : C^p(\mathfrak{U}; \mathcal{F}^q) \rightarrow C^{p+1}(\mathfrak{U}; \mathcal{F}^q), \quad d'' : C^p(\mathfrak{U}; \mathcal{F}^q) \rightarrow C^p(\mathfrak{U}; \mathcal{F}^{q+1}).$$

To determine the corresponding spectral sequences, note that

$$(H_{d''}^q(K))^p = H^q(K^{*,p}) = H^q(C^*(\mathfrak{U}; \mathcal{F}^p)) = H^q(\mathfrak{U}; \mathcal{F}^p),$$

and then

$${}^{II}E_2^{p,q} = H^p(H^q(\mathfrak{U}; \mathcal{F}^*)).$$

For ${}^I E_2$, we have

$$\begin{aligned} (H_{d''}^q(K))^p &= H^q(K^{*,p}) = H^q(C^p(\mathfrak{U}; \mathcal{F}^*)) \\ &= H^q \left(\prod_{s=\{i_0, \dots, i_p\} \subset I} \mathcal{F}^*(U_s) \right) \\ &= \prod_{s=\{i_0, \dots, i_p\} \subset I} H^q(\mathcal{F}^*(U_s)) \\ &= \prod_{s=\{i_0, \dots, i_p\} \subset I} \mathcal{H}^q(\mathcal{F}^*)(U_s) \\ &= C^p(\mathfrak{U}; \mathcal{H}^q(\mathcal{F}^*)), \end{aligned}$$

implying that

$${}^I E_2^{p,q} = H^p(C^*(\mathfrak{U}; \mathcal{H}^q(\mathcal{F}^*))) = H^p(\mathfrak{U}; \mathcal{H}^q(\mathcal{F}^*)).$$

Now suppose $\mathcal{F}^* = \mathcal{C}^*(X; \mathcal{A})$ is the Godement resolution of a sheaf \mathcal{A} . The canonical injection $\mathcal{A} \rightarrow \mathcal{F}^0$ then induces a canonical homomorphism of complexes

$$C^*(\mathfrak{U}; \mathcal{A}) \rightarrow C^*(\mathfrak{U}; \mathcal{F}^0) \rightarrow K_{\text{tot}}^*,$$

which further induces a homomorphism

$$H^n(\mathfrak{U}; \mathcal{A}) \rightarrow H^n(K_{\text{tot}}^*)$$

of cohomology groups. As \mathcal{F}^* is a flasque resolution of \mathcal{A} , we have $H^q(\mathfrak{U}; \mathcal{A}) = 0$ for $q > 0$ by theorem 5.3, and hence

$${}^{II}E_2^{p,q} = H^p(\mathfrak{U}; \mathcal{H}^q(\mathcal{F}^*)) = 0, \quad q > 0.$$

It follows that the homomorphisms

$$H^n(X; \mathcal{A}) = H^n(\Gamma(\mathcal{F}^*)) = H^n(H^0(\mathfrak{U}; \mathcal{F}^*)) \rightarrow H^n(K_{\text{tot}}^*)$$

are all bijective. We then obtain natural homomorphisms

$$H^n(\mathfrak{U}; \mathcal{A}) \rightarrow H^n(X; \mathcal{A}).$$

Turning to the other spectral sequence, we find the following theorem.

Theorem 5.4 Suppose \mathfrak{U} is an open cover of a topological space X and \mathcal{A} is a sheaf on X . Then the following convergence of the spectral sequence holds:

$$E_2^{p,q} = H^p(\mathfrak{U}; \mathcal{H}^q(\mathcal{A})) \Rightarrow H^{p+q}(X; \mathcal{A}),$$

where the sheaf $\mathcal{H}^q(\mathcal{A})$ is given by

$$U \mapsto H^q(\mathcal{C}^*(X; \mathcal{A})(U))$$

for each $q \geq 0$, with $\mathcal{C}^*(X; \mathcal{A})$ the Godement resolution of \mathcal{A} .

Corollary 5.5 Suppose $\mathfrak{U} = \{U_i\}_{i \in I}$ is an open cover of a topological space X and \mathcal{A} is a sheaf on X . If

$$H^q(\mathcal{C}^*(X; \mathcal{A})(U_s)) = 0, \quad s \in I, q > 0,$$

then the canonical homomorphisms

$$H^n(\mathfrak{U}; \mathcal{A}) \rightarrow H^n(X; \mathcal{A})$$

are bijective.

The above results can actually be generalized to H_Φ^n , which yields canonical homomorphisms

$$H_\Phi^n(\mathfrak{U}; \mathcal{A}) \rightarrow H_\Phi^n(X; \mathcal{A}).$$

It can be seen from our constructions that these homomorphisms are the same as those at the end of section 5.1.

5.3 Čech cohomology

Suppose $\mathfrak{U} = \{U_i\}_{i \in I}$ and $\mathfrak{V} = \{V_j\}_{j \in J}$ are open covers of a topological space X such that \mathfrak{V} is a refinement of \mathfrak{U} , i.e., for each $j \in J$, there is $i \in I$, such that $V_j \subset U_i$. Then we have a map $\iota: J \rightarrow I$ such that $V_j \subset U_{\iota(j)}$ for each j . Consider a family of support Φ and a sheaf \mathcal{A} on X . We can define a homomorphism of complexes

$$\iota^*: C_\Phi^*(\mathfrak{U}; \mathcal{A}) \rightarrow C_\Phi^*(\mathfrak{V}; \mathcal{A})$$

by

$$(\iota^*(\alpha))_{j_0 \cdots j_n} = \alpha_{\iota(j_0) \cdots \iota(j_n)}|_{V_{j_0 \cdots j_n}}, \quad j_0, \dots, j_n \in J, \alpha \in C_\Phi^n(\mathfrak{U}; \mathcal{A}).$$

This further induces a homomorphisms between cohomology groups. However, since the choice of ι is not unique, the naturality of the homomorphisms need considering.

Theorem 5.6 Suppose $\mathfrak{U} = \{U_i\}_{i \in I}$ and $\mathfrak{V} = \{V_j\}_{j \in J}$ are open covers of a topological space X such that \mathfrak{V} is a refinement of \mathfrak{U} , Φ is a family of support on X , and \mathcal{A} is a sheaf on X . If ι_1 and ι_2 are two maps from J to I such that $V_j \subset U_{\iota_1(j)}$ and $V_j \subset U_{\iota_2(j)}$ for each $j \in J$, then the induced homomorphisms

$$\iota_1^*, \iota_2^*: C_\Phi^*(\mathfrak{U}; \mathcal{A}) \rightarrow C_\Phi^*(\mathfrak{V}; \mathcal{A})$$

are homotopic.

Proof. Define homomorphisms

$$K: C_\Phi^n(\mathfrak{U}; \mathcal{A}) \rightarrow C_\Phi^{n-1}(\mathfrak{V}; \mathcal{A})$$

for each $n > 0$ by

$$(K\alpha)_{j_0 \cdots j_{n-1}} = \sum_{k=0}^{n-1} (-1)^k \alpha_{\iota_1(j_0) \cdots \iota_1(j_k) \iota_2(j_k) \cdots \iota_2(j_{n-1})} \Big|_{V_{j_0 \cdots j_{n-1}}}.$$

We can verify that

$$\iota_2^* - \iota_1^* = dK + Kd,$$

i.e., ι_1^* and ι_2^* are homotopic through K . \square

Since homotopic cochain complex homomorphisms induce the same homomorphism of cohomology groups, we obtain a canonical homomorphism

$$H_\Phi^n(\mathfrak{U}; \mathcal{A}) \rightarrow H_\Phi^n(\mathfrak{V}; \mathcal{A})$$

for each $n \geq 0$. Moreover, if \mathfrak{W} is a refinement of \mathfrak{V} , then the following diagram commutes:

$$\begin{array}{ccc} H_\Phi^n(\mathfrak{U}; \mathcal{A}) & \longrightarrow & H_\Phi^n(\mathfrak{V}; \mathcal{A}) \\ & \searrow & \swarrow \\ & H_\Phi^n(\mathfrak{W}; \mathcal{A}) & \end{array}$$

We also have the commutative diagram

$$\begin{array}{ccc} H_\Phi^n(\mathfrak{U}; \mathcal{A}) & \longrightarrow & H_\Phi^n(\mathfrak{V}; \mathcal{A}) \\ & \searrow & \swarrow \\ & H_\Phi^n(X; \mathcal{A}) & \end{array}$$

Consider the collection $\mathfrak{C}(X)$ of open covers of X of the form $\tilde{\mathfrak{U}} = \{\tilde{U}_x\}_{x \in X}$ such that $x \in \tilde{U}_x$ for each x . Equip $\mathfrak{C}(X)$ with the partial order given by

$$\tilde{\mathfrak{U}} \leq \tilde{\mathfrak{V}} \iff \tilde{U}_x \subset \tilde{V}_x \text{ for all } x \in X.$$

For $\tilde{\mathfrak{U}} \leq \tilde{\mathfrak{V}}$, the identity map on X induces a canonical homomorphism

$$C_\Phi^*(\tilde{\mathfrak{V}}; \mathcal{A}) \rightarrow C_\Phi^*(\tilde{\mathfrak{U}}; \mathcal{A})$$

for each family of support Φ on X . Define the **Čech cochain complex** on X by

$$\tilde{C}_\Phi^*(X; \mathcal{A}) = \varinjlim C_\Phi^*(\tilde{\mathfrak{U}}; \mathcal{A}),$$

where the inductive limit is taken over $\mathfrak{U} \in \mathfrak{C}(X)$. The **Čech homology groups** of \mathcal{A} is then defined to be

$$\tilde{H}_\Phi^n(X; \mathcal{A}) = H^n(\tilde{C}_\Phi^*(X; \mathcal{A})), \quad n \geq 0.$$

We can see that

$$\tilde{H}_\Phi^n(X; \mathcal{A}) = H^n(\varinjlim C_\Phi^*(\tilde{\mathcal{U}}; \mathcal{A})) = \varinjlim H^n(C_\Phi^*(\tilde{\mathcal{U}}; \mathcal{A})) = \varinjlim H_\Phi^n(\tilde{\mathcal{U}}; \mathcal{A}).$$

Suppose \mathcal{U} is an arbitrary open cover of X . There exists $\tilde{\mathcal{U}} \in \mathfrak{C}(X)$ such that $\tilde{\mathcal{U}}$ is a refinement of \mathcal{U} . Then we have a canonical homomorphism given by the refinement relation

$$H_\Phi^n(\mathcal{U}; \mathcal{A}) \rightarrow H_\Phi^n(\tilde{\mathcal{U}}; \mathcal{A}),$$

and a canonical homomorphism given by the inductive limit

$$H_\Phi^n(\tilde{\mathcal{U}}; \mathcal{A}) \rightarrow \tilde{H}_\Phi^n(X; \mathcal{A}).$$

Their composition gives a homomorphism

$$H_\Phi^n(\mathcal{U}; \mathcal{A}) \rightarrow \tilde{H}_\Phi^n(X; \mathcal{A}).$$

We claim that this homomorphism is independent of the choice of $\tilde{\mathcal{U}}$. Indeed, suppose $\tilde{\mathcal{V}} \in \mathfrak{C}(X)$ is another refinement of \mathcal{U} . Then we have another open cover $\tilde{\mathcal{W}} \in \mathfrak{C}(X)$ of X such that $\tilde{\mathcal{W}} \leq \tilde{\mathcal{U}}$ and $\tilde{\mathcal{W}} \leq \tilde{\mathcal{V}}$. It follows that we have the commutative diagram

$$\begin{array}{ccccc} & & H_\Phi^n(\mathcal{U}; \mathcal{A}) & & \\ & \swarrow & \downarrow & \searrow & \\ H_\Phi^n(\tilde{\mathcal{U}}; \mathcal{A}) & \longrightarrow & H_\Phi^n(\tilde{\mathcal{V}}; \mathcal{A}) & \longleftarrow & H_\Phi^n(\tilde{\mathcal{W}}; \mathcal{A}) \\ & \searrow & \downarrow & \swarrow & \\ & & \tilde{H}_\Phi^n(X; \mathcal{A}) & & \end{array}$$

This shows that the above homomorphism is canonical.

It can be shown that for each open covers \mathcal{U} and \mathcal{V} of X such that \mathcal{V} is a refinement of \mathcal{U} , we have the commutative diagram

$$\begin{array}{ccc} H_\Phi^n(\mathcal{U}; \mathcal{A}) & \longrightarrow & H_\Phi^n(\mathcal{V}; \mathcal{A}) \\ & \searrow & \swarrow \\ & \tilde{H}_\Phi^n(X; \mathcal{A}) & \end{array}$$

Furthermore, by the explicit construction of the inductive limit of abelian groups, we can see that

$$\tilde{H}_\Phi^n(X; \mathcal{A}) = \varinjlim H_\Phi^n(\mathcal{U}; \mathcal{A}),$$

where the inductive limit is taken over all the open covers \mathcal{U} over X . More generally, if \mathfrak{C} is a family of open covers on X such that each open cover \mathcal{U} of X attains a refinement in \mathfrak{C} , then $\tilde{H}_\Phi^n(X; \mathcal{A})$ is the inductive limit taken over \mathfrak{C} .

Theorem 5.7 Suppose X is a topological space, Φ is a family of support on X such that each $S \in \Phi$ attains a neighborhood in Φ . Then the functor $\mathcal{A} \mapsto \tilde{C}_\Phi^*(X; \mathcal{A})$ takes an exact sequence of presheaves to an exact sequence of complexes.

Proof. Consider an exact sequence of presheaves

$$0 \rightarrow \mathcal{A} \rightarrow \mathcal{B} \rightarrow \mathcal{C} \rightarrow 0,$$

which implies an exact sequence

$$0 \rightarrow \mathcal{A}(U) \rightarrow \mathcal{B}(U) \rightarrow \mathcal{C}(U) \rightarrow 0$$

for each open $U \subset X$. It follows that

$$0 \rightarrow C^*(\mathfrak{U}; \mathcal{A}) \rightarrow C^*(\mathfrak{U}; \mathcal{B}) \rightarrow C^*(\mathfrak{U}; \mathcal{C}) \rightarrow 0$$

is exact for each open cover \mathfrak{U} , which yields from the left exactness of Γ_Φ that

$$0 \rightarrow C_\Phi^*(\mathfrak{U}; \mathcal{A}) \rightarrow C_\Phi^*(\mathfrak{U}; \mathcal{B}) \rightarrow C_\Phi^*(\mathfrak{U}; \mathcal{C})$$

is exact. Passing to the inductive limit, we see the exactness of

$$0 \rightarrow \tilde{C}_\Phi^*(X; \mathcal{A}) \rightarrow \tilde{C}_\Phi^*(X; \mathcal{B}) \rightarrow \tilde{C}_\Phi^*(X; \mathcal{C}).$$

It remains to show the surjectivity of $\tilde{C}_\Phi^*(X; \mathcal{B}) \rightarrow \tilde{C}_\Phi^*(X; \mathcal{C})$.

Consider an element in $\tilde{C}_\Phi^*(X; \mathcal{C})$ represented by an cochain $\alpha \in C_\Phi^p(\tilde{\mathfrak{U}}; \mathcal{C})$ with $S \in \Phi$ being its support. Take a neighborhood $T \in \Phi$ of S . By replacing $\tilde{\mathfrak{U}}$ with a refinement if necessary, we may assume that $U_x \subset T$ for each $x \in S$ and $\alpha_s = 0$ if $s = \{x_0, \dots, x_p\}$ is not contained in S . Then each α_s can be lifted to $\beta_s \in \mathcal{B}(U_s)$, which generates a cochain $\beta \in C_\Phi^p(\tilde{\mathfrak{U}}; \mathcal{B})$. This completes the proof. \square

This implies that an exact sequence of presheaves yields an exact sequence of Čech cohomology groups.

Recalling that we have a canonical homomorphism

$$H^n(\mathfrak{U}; \mathcal{A}) \rightarrow H^n(X; \mathcal{A})$$

for each open cover \mathfrak{U} of X , the universal property of the inductive limit yields a canonical homomorphism

$$\tilde{H}^n(X; \mathcal{A}) \rightarrow H^n(X; \mathcal{A}).$$

The rest of this section devotes to showing the bijectivity of this homomorphism.

Suppose $\mathcal{F}^* = \mathcal{C}^*(X; \mathcal{A})$ is the Godement resolution of \mathcal{A} . Consider the double complex

$$\tilde{K} = \left\{ \tilde{C}^p(X; \mathcal{F}^q) \right\}.$$

We have the canonical homomorphisms of complexes

$$\tilde{C}^*(X; \mathcal{A}) \rightarrow \tilde{K}_{\text{tot}}^* \leftarrow \Gamma(\mathcal{F}^*).$$

By theorem 5.3, we have $\tilde{H}^q(X; \mathcal{F}^p)$ for each $q > 0$ and p , implying that

$${}^{II}E_2^{p,q} = H^p(\tilde{H}^q(X; \mathcal{F}^*)) = 0, \quad q > 0.$$

Thus the canonical homomorphism

$$H^n(X; \mathcal{A}) = H^n(\tilde{H}^0(X; \mathcal{F}^*)) \rightarrow H^n(\tilde{K}_{\text{tot}}^*)$$

is bijective. Define the presheaf

$$\mathcal{H}^q(X; \mathcal{A}) : U \mapsto H^q(\mathcal{F}^*(U)) = H^q(U; \mathcal{A})$$

for each q . Then as $\tilde{C}^p(X; -)$ is an exact functor from $\text{pSh}(X, \text{Ab})$, we have

$$H^q(K^{p,*}) = H^q(\tilde{C}^p(X; \mathcal{F}^*)) = \tilde{C}^p(X; \mathcal{H}^q(X; \mathcal{A})),$$

and hence

$${}^I E_2^{p,q} = \tilde{H}^p(X; \mathcal{H}^q(X; \mathcal{A})).$$

Theorem 5.8 Suppose X is a topological space and \mathcal{A} is a sheaf on X . Consider the presheaves

$$\mathcal{H}^q(X; \mathcal{A}) : U \mapsto H^q(\mathcal{F}^*(U)).$$

Then the following convergence of the spectral sequence holds:

$$E_2^{p,q} = \tilde{H}^p(X; \mathcal{H}^q(X; \mathcal{A})) \Rightarrow H^{p+q}(X; \mathcal{A}).$$

The spectral sequence actually gives the canonical homomorphism

$$\tilde{H}^n(X; \mathcal{A}) \rightarrow H^n(X; \mathcal{A})$$

by the canonical isomorphism $\mathcal{H}^0(X; \mathcal{A}) = \mathcal{A}$. It is worth noting that the sheaf generated by $\mathcal{H}^q(X; \mathcal{A})$ is zero for $q > 0$, as each cocycle of \mathcal{F}^* is a coboundary locally.

Lemma 5.9 If \mathcal{F} is a presheaf on X generating a zero sheaf, then $\tilde{H}^0(X; \mathcal{F}) = 0$.

Proof. Consider a cochain $\alpha \in \tilde{C}^0(X; \mathcal{F})$ given by an open cover $\tilde{\mathfrak{U}} = \{U_x\}_{x \in X}$ of X and a family $\{\alpha_x\}$ with $\alpha_x \in \mathcal{F}(U_x)$. Since the sheaf generated by \mathcal{F} is zero, there is a neighborhood $V_x \subset U_x$ of x such that $\alpha_x|_{V_x} = 0$. Passing to $\tilde{\mathfrak{V}} = \{V_x\}_{x \in X}$, we obtain $\tilde{C}^0(X; \mathcal{F}) = 0$, which clearly implies that $\tilde{H}^0(X; \mathcal{F}) = 0$. \square

We then see that $\tilde{H}^0(X; \mathcal{H}^1(X; \mathcal{A})) = \tilde{H}^0(X; \mathcal{H}^2(X; \mathcal{A})) = 0$, which implies the following corollary.

Corollary 5.10 Suppose X is a topological space and \mathcal{A} is a sheaf on X . Then the canonical homomorphism

$$\tilde{H}^n(X; \mathcal{A}) \rightarrow H^n(X; \mathcal{A})$$

is bijective for $n = 0, 1$ and injective for $n = 2$.

The above results actually hold for each family of support Φ satisfying the condition of theorem 5.7.

Theorem 5.11 Suppose X is a topological space, Φ is a paracompactified family on X , and \mathcal{F} is a presheaf on X . If the sheaf generated by \mathcal{F} is zero, then

$$\tilde{H}_\Phi^n(X; \mathcal{F}) = 0, \quad n \geq 0.$$

Proof. We will show that each cohomological class in $\tilde{H}_\Phi^n(X; \mathcal{A})$ can be represented by a locally finite open cover \mathfrak{U} and a cocycle on \mathfrak{U} . Next we will show that each cochain on this cover induces zero on a refinement.

Consider a cohomological class in $\tilde{H}_\Phi^n(X; \mathcal{A})$ represented by an open cover $\mathfrak{U} = \{U_i\}_{i \in I}$ and a cocycle $\alpha \in C^n(\mathfrak{U}; \mathcal{A})$ supported on $S \in \Phi$. Take a neighborhood $S' \in \Phi$ of S , for which we can assume that each U_i intersecting S is contained in S' . Let

$$I_0 = \{i \in I \mid U_i \cap S \neq \emptyset\}.$$

Since α supports on S , each $x \in X \setminus S$ attains a neighborhood $V(x)$ such that α_s induces zero on $U_s \cap V(x)$ for each $s \in I$. Replacing \mathfrak{U} by its refinement if necessary, we may assume that each U_i with $i \notin I_0$ is contained in some $V(x)$, which implies that $\alpha_s = 0$ if s is not contained in I_0 . We then see that the cohomological class can be represented by an open cover $\mathfrak{U} = \{U_i\}_{i \in \{0\} \cup I_0}$ with $U_0 = X \setminus S$ and $U_i \subset S'$ if $i \in I_0$. Since S' is paracompact, there is a locally finite refinement of $\mathfrak{U} \cap S'$. Passing to this refinement, it is valid to assume the local finiteness of \mathfrak{U} .

Now consider a locally finite recover $\mathfrak{U} = \{U_i\}_{i \in I}$ together with a refinement $\mathfrak{V} = \{V_i\}_{i \in I}$ with $\overline{V}_i \subset U_i$ for each $i \in I$ and $\alpha \in C_\Phi^n(\mathfrak{U}; \mathcal{A})$. For each $x \in X$ we can take a neighborhood W_x such that $x \in U_i$ implies $W_x \subset U_i$, $x \in V_i$ implies $W_x \subset V_i$, and that W_x intersects V_i implies $x \in U_i$. Moreover, since the sheaf generated by \mathcal{A} is zero, each $x \in U_i$ has a neighborhood on which α_x induces zero. Thus we can meanwhile assume that $x \in U_i$ implies $\alpha_x|_{W_x} = 0$. Take any map $\iota : X \rightarrow I$ such that $W_x \subset V_{\iota(x)}$ for each $x \in X$. Consider any $(x_1, \dots, x_n) \subset X$ such that $W_{x_0 \dots x_n} \neq \emptyset$. Assume $i_k = \iota(x_k)$ for each k . As

$$W_{x_0} \cap \dots \cap W_{x_n} \neq \emptyset,$$

W_{x_0} intersects each $W_{x_k} \subset V_{i_k}$, and then our assumption suggests that $x_0 \in U_{i_0 \dots i_n}$. It follows that $W_{x_0} \subset U_{i_0 \dots i_n}$, and $\alpha_{i_0 \dots i_n}|_{W_{x_0}} = 0$. Clearly we obtain

$$\alpha_{i_0 \dots i_n}|_{W_{x_0 \dots x_n}} = 0,$$

i.e., $\iota^*(\alpha) = 0$. □

Theorem 5.12 Suppose X is a topological space, Φ is a paracompactified family on X and \mathcal{A} is a sheaf on X . Then the canonical homomorphisms

$$\tilde{H}_\Phi^n(X; \mathcal{A}) \rightarrow H_\Phi^n(X; \mathcal{A})$$

are bijective.

Proof. We have

$$\tilde{H}_\Phi^p(X; \mathcal{H}^q(X; \mathcal{A})) = 0, \quad q > 0$$

from theorem 5.11. Then the generalized version of theorem 5.8 implies the desired isomorphisms. □