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We are trying to use the categorical language to describe the sheaf theory, mostly using the
universal properties.

1 Sheaves of sets

Construct a contravariant functor Open : Top® — Cat . For each topological space X, we define
Open(X) to be the category whose objects are open subsets of X and whose morphisms are inclusions
of open sets. For each continuous map f: X — Y, the functor Open(f) sends an open set ' c ¥ to
the open set /= 1() c X, and maps the inclusions correspondingly.

Definition 1.1 (presheaf) A presheaf (of sets) on a topological space X is a contravariant
functor
F : Open(X)°? — Set.

The category of presheaves on X, with morphisms given by natural transformations, is denoted
by pSh(X, Set), i.e.,
pSh(X, Set) = Fun(Open(X)°P, Set).

If F is a presheaf on X and U c V' c X are open sets, then we denote the restriction morphism
F() — F(U)
by rg or (-)|y-
Definition 1.2 (sheaf) A sheaf (of sets) on a topological space X is a presheaf F such that for

every open cover {U},.; of an open set U c X, the following diagram is an equalizer:

FU) = Ty FU) =3 T 7 0 0)

where 7 is given by the restriction morphisms F(U) — F(U,), 1 is given by the restriction morphisms
F(U,) = F(U;nU,) and p is given by the restriction morphisms F(U;) — .7-'((]} nU).

The category of sheaves on X, with morphisms given by natural transformations, is denoted by
Sh(X, Set). It is clear that Sh(X, Set) is a full subcategory of pSh(X, Set).

Example 1.1 (sheaf of sections) Suppose E and X are a topological spaces and p : £ — X is
a continuous map. For each open subset U c X, a section of (£,p) on U is a continuous map
s+ U — E such that p(s(x)) = x for each x € U. Denote the set of sections of (£, p) on U by I'(U, E).
The assignment

UwTI(U,E)



defines a presheaf on X, with the restriction morphisms given by the restriction of sections. This is
actually a sheaf, called the sheaf of sections of (£, p).

The sheafification of presheaves is defined as the left adjoint of the inclusion (or forgetful)
functor
Sh(X, Set) — pSh(X, Set).

The sheafification of a presheaf F is usually denoted by F*.
The sheafification of a presheaf can be constructed explictly using the concept of etale spaces.

Definition 1.3 (etale space) An etale space over a topological space X is a pair (E, p), where E
is a topological space and p : £ — X is a local homeomorphism.

The category of etale spaces over X is denoted by Et(X). The morphisms in Et(X) are continuous
maps f: (E,p) — (E',p) such that p' o f = p.

Theorem 1.1 For a topological space X, there are functors
F: Et(X) — Sh(X, Set)

and
G : pSh(X, Set) — Et(X)

such that F is a category equivalence and the following diagrams commutes up to natural isomor-
phism:

+

)
Et(X) ;:fi:i\f?fff:fffi_ffiffi’pSh(}(,Set)

G

* is the sheafification functor.

where ¢ is the inclusion functor and (-)
Proof. The functor F is defined such that F(E, p) is the sheaf of sections of (£, p), and the morphism
F(f) is given by the compostion of f with the sections.

Suppose F is a presheaf on X. For each x € X, define the stalk of F at x to be the set

F. =lim F(U),
—

where the limit is taken over all open sets U containing x. Let

E=]]x

xeX

and define the map
pE—>X

by assigning x € X to the elements in the stalk 7. For each open set U c X and s € F(U), there is
a function 5: U — E mapping each x € U to the corresponding element of s in F,. Give E the finest
topology such that § is continuous for each open subset U c X and s € F(U). It can be verified that
(E, p) is an etale space over X.

Now suppose f : F — G is a morphism of presheaves. Using the universal property of the
inductive limit, we can deduce a unique map

L B— G



for each x € X such that for each neighborhood U of x, the following diagram commutes:

Suppose (E, p) is the etale space constructed from F and (£, p’) is the etale space constructed from
G. Putting these f, together, we get a morphism

Fi(Ep) = (E.p)

in Et(X). The functor G is then defined by assigning to each presheaf F the etale space (F,p)
constructed above. O

For each presheave F, the corresponding sheaf F(G(F)) is a sheafification of F, called the sheaf
generated by the presheaf F.

Remark Suppose (E,p) is an etale space over X and F is the sheaf of sections of (£, p). Then
the elements in F, is called the germs of sections of (E,p) at x. Two sections s,¢ of (E,p) on
neighborhoods U and V" of x define the same germ at x if and only if there exists a neighborhood
W cUnV of x such that s|, = ¢|.

Remark The sheafification process preserves the stalks. Indeed, for each presheaf F, the stalk of
F* at x is naturally isomorphic to
o1[5)-%

yEX

LmT
—

where the limit is taken over all open sets U containing x. This isomorphism is actually canonical.

Using the category equivalence betwen Et(X) and Sh(X, Set), we can also figure out the condition
of a morphism of sheaves to be injective ot surjective. Suppose F and G are sheaves on X and
f:F — G is a morphism of sheaves. Then f is injective (surjective) if and only if the corresponding
morphism of etale spaces f : (E,p) — (E,p") is injective (surjective), which is then equivalent
to that f; is injective (surjective) for each x € X. It can be seen that if / is injective, then
fU) : F(U) — G(U) is injective for each open set U c X. However, if f is surjective, it is not
necessarily true that f(U) is surjective for each open set U c X.

The subsheaf and quotient sheaf of a sheaf F can be defined as the subobject and quotient
object in the category Sh(X, Set). Specifically, a subsheaf of F is a sheaf G together with an injective
morphism 7 : G — F, and a quotient sheaf of F is a sheaf Q together with a surjective morphism
g + F — Q. Similarly we can consider the direct product of sheaves and the inductive limit of a
family of sheaves.

Two important constructions in sheaf theory are the direct image sheaf and the inverse image
sheaf.

Suppose f/: X — Y is a continuous map between topological spaces X and Y. Then f induces a
functor

Open(f) : Open(Y) — Open(X).

For each presheaf 7 on X, define the direct image f,F to be the presheaf on Y given by the
composition

Open(Y) M Open(X) —Z 5 Set .



It can be verified that f,F is a sheaf on Y. The direct image £, gives a functor
1. Sh(X, Set) — Sh(Y, Set).

Suppose F is a sheaf on X and G is a sheaf on Y, with the corresponding etale spaces p : £ — X
and p' : £' > Y. A morphism ¢ : F — G compatible with f is a continuous map ¢ : E — E' such
that the following diagram commutes:

E g El
P ?
X —7Y

f

The inverse image f~ G of G is the sheaf on X, together with a morphism f cf 'G — G compatible
with f, satisfying the following universal property: for each sheaf 7 on X and each morphism
g:F — G compatible with £, there exists a unique morphism 4 : F — £ 'G (of sheaves on X) such
that ¢ = f o h. The inverse image /' gives a functor

f71:Sh(Y, Set) — Sh(X, Set).
The inverse image f_lg can be constructed explicitly by the map
U f1GU) = {seT(U,E) | 5(x) € Gp(v) for each x € U},
An equivalent constuction of the inverse image is given by
1 BT
F6W) =limG),

where the inductive limit is taken over all open set 7/ c Y such that f(U) c V.
If X is a subspace of ¥ and f : X — Y is the inclusion map, then the inverse image /' “1G is called
the restriction sheaf of G to X, and is denoted by G|y

Theorem 1.2 For each continuous map f : X — 1 between topological spaces, the functors
f’1 : Sh(Y,Set) — Sh(X,Set) and £, : Sh(X,Set) — Sh(Y,Set) form an adjoint pair, i.e., there is a
natural isomorphism for each sheaf 7 on X and each sheaf G on YV

Homg, y ser) (1G> F) = Homgyy ser) (G £ F).-

2 Sheaves of modules

The construction of sheaves of sets can be generalized to sheaves of objects in an arbitrary category
C.

Definition 2.1 (presheaf) A (C-valued) presheaf on a topological space X is a contravariant
functor
F : Open(X)°® — C.

Definition 2.2 (sheaf) A (C-valued) sheaf on a topological space X is a presheaf F such that
for every open cover {U},; of an open set U c X, the following diagram is an equalizer:

FO) = Ty FU) == T 7 1)

where 7 is given by the restriction morphisms F(U) — F(U;), 1 is given by the restriction morphisms
F(U) = F(U;nU,) and p is given by the restriction morphisms F(U;) — ]—'(U} nU).
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The category of C-valued presheaves and sheaves on X are also defined naturally, denoted by
pSh(X, C) and Sh(X, C), respectively.

An Ab-valued (pre-) sheaf is also called a sheaf of abelian groups, and a Rng-valued (pre-)
sheaf is called a sheaf of rings.

Similarly to the case of (pre-) sheaces of sets, we can define the stalk of a presheaf at a point,
and the sheafification of a presheaf. The stalk of a sheaf 7 at x € X is denoted by F,, and the
sheafification of F is denoted by F".

Example 2.1 Suppose X is a topological space and 4 is an abelian group (or a ring). Consider
the presheaf F on X given by U — A for each nonempty open set U c X. Then the shefification F*
is a sheaf of abelian groups (or rings) on X, which has the expression as

F(U)={f:U — 4| f is locally constant}.

This is called the locally constant sheaf on X with values in 4, denoted by 4. The stalk of 4 at
x € X is isomorphic to A4 for each x € X.

Example 2.2 If X is a topological space, then the sheaf of continuous functions on X, given by
C)?(U) ={f:U — R| f is continuous},

is a sheaf of rings on X. If M is a smooth manifold, then the sheaf of smooth functions on A, given
by

Cy(U) ={f: U — R| f is smooth},
is a sheaf of rings on M. If M is a complex manifold, then the sheaf of holomorphic functions on

M, given by
Oy (U) ={f: U — C| f is holomorphic},

is a sheaf of rings on M.

Definition 2.3 (module over a shef of rings) Suppose X is a topological space and A is a sheaf
of rings on X. A (left) .A-module is a sheaf M of abelian groups on X such that for each open
set U c X, M(U) is a (left) A(U)-module, and that for each open sets V' c U c X, the following
disgram commutes:

AU) x M(U) —— M(U)
AWV)x M) —— M(V)
where the vertical arrows are the restriction morphisms and the horizontal arrows are the action of

A on M.

Remark If A = A4, then an 4-module is exactly a sheaf of 4-modules on X. In particular, a
Z-module is equivalent to a sheaf of abelian groups on X.

Remark By taking the inductive limits, we can see that for each x € X, the stalk M, is naturally
a A -module.

A morphism f : £L — M of A-modules is a morphism of sheaves of abelian groups such that
for each open set U c X, f(U) : L(U) — M(U) is a homomorphism of .A(U)-modules. For two
morphisms f, g : L — M of A-modules, we define their sum f + ¢ by

(f +0)(U) = f(U) + g(U) : LU) — M(U)



for each open set U c X. With respect to this addition, the zero morphism is clear. This gives
a structure of abelian group on the set Hom 4 (£, M) of morphisms between .A-modules £ and M.
The category of A-modules is denoted by A — Mod.

The direct product and the direct sum of .A-modules are defined in the natural way. They give
the product object and the coproduct object in the category A — Mod.

For a sheaf A of rings on X and .A-modules £ and M, we can define the sheaf hom Hom 4 (L, M)
to be the presheaf of abelian groups on X given by

Hom (L, M)(U) = Hom_A\U(‘c|U’M|U)

for each open set U c X. It turns out that Hom 4(L, M) is a sheaf of abelian groups on X, and if
A is commutative, then Hom 4(L, M) is canonically an A-module.

Theorem 2.1 Suppose X is a topological space and A is a sheaf of commutative rings with identity
on X. Then for each .A-module M, the sheaf hom Hom 4(A, M) is naturally isomorphic to M as
an A-module.

An A-submodule and a quotient A-module of an A-module M on X are defined to be a
subobject and a quotient object of M in the category A — Mod, respectively. However, we may have
an alternative intuitive definition. A submodule of M is an A-module A such that for each open
set U, N(U) is an A(U)-submodule of M(U), and that the restiction morphisms commute with
the inclusion of A (U) into M(U). The quotient A-module M /N is then defined to be the sheaf of
abelian groups associated to the presheaf U — M(U)/N (U), with the structure of .A-module given
by the induced action of A(U) on M(U)/N (U). Then for each x € X, the stalk A can be identified
with an A _-submodule of M, and the stalk (M/N), can be identified with the quotient A _-module
Mx/'/\/.;(f'

Theorem 2.2 Suppose X is a topological space and A is a sheaf of rings on X. Then the category
A — Mod of A-modules is an abelian category.

Proof. Suppose f : L — M is a morphism of .A-modules. The presheaf U — ker f(U) is actually a
sheaf, which is defined to be the kernel of /. The sheaves associated to the presheaves U — im f(U)
and U — coker f(U), are define to be the image and cokernel of f, respectively. We can see that
ker f is a A-submodule of £, im f is a A-submodule of M and a quotient A-module of £, and
coker /" is a quotient .A-module of M, all in a natural way. We also have the natural .A-module
isomorphisms

L]/ ker f > im f, M/im f — coker f.

A sequence of A-modules
chmE N

is called an exact sequence if the image of f is equal to the kernel of g, just as the case of a
general abelian category.

Theorem 2.3 Suppose X is a topological space and A is a sheaf of rings on X. Then the sequence

of A-modules

chmE N



is exact if and only if for each x € X, the induced sequence of A _-modules

Lhm SN
is exact.
Remark This shows that the functor A — Mod — A, — Mod given by
L L,
is exact for each x € X. However, it worth noting that for an open subset U c X, the functor
ruy,-): A-Mod - A(U) - Mod
is only left exact.

Example 2.3 Suppose M is an n-dimesnional smooth manifold. For each p > 0, consider the
R-module Q7 of differential p-forms on M, where Q?(U) is the differential p-forms on U for each
open set U ¢ M. The exterior derivative d gives a morphism Q7 — Q?*! of R-modules for each
p = 0. Moreover, we can embed R into Q° by viewing a locally constant function as a differential
0-form, i.e, a smooth function on 4. Then we obtain a sequence of R-modules

d d d

1 n
> Q > > Q > 0

0 > R s Q°
By Poincare lemma, we have the following exact sequence of R-spaces:
0— R— Q'R —5 o'®R") 45 .. 45 "R") — 0,

which implies the exact sequence of stalks at each x € M as M is locally homeomorphic to R”. Thus
the above sequence of sheaves is an exact sequence of R-modules.

Suppose A is a sheaf of rings on X, £ is a right .A-module and M is a left . A-module. Then we
can define the tensor product £ ®, M to be the sheaf of abelian groups on X associated to the
presheaf

U L(U) @4y M(U)

for each open set U c X. We can see that (£ ®, M), is naturally isomorphic to the tensor product
L, ®, M, for each x € X, and that each mid-linear morphism £ x M — A of sheaves of abelian
groups factors through the canonical mid-linear morphism £x M — L ® 4 M.

For a continuous map f : X — Y between topological spaces, we can also consider the direct
image and inverse image of sheaves of modules. Suppose A is a sheaf of rings on X and M is an
A-modules. Then the direct image f,.A is a sheaf of rings on Y, and the direct image £, M, as a
sheaf of abelian groups, is canonically a f,.A-module. We then obtain a functor

fit A=Mod — f,A-Mod.

Dually, if B is a sheaf of rings on ¥ and A is a B-module, then the inverse image f 1B is a sheaf of
rings on X, and the inverse image /~ I\, as a sheaf of abelian groups, is canonically a - !B-module.
This yields another functor

f_I:B—Mod —>f_18—Mod.



Theorem 2.4 Suppose f : X — Y is a continuous map, A is a sheaf of rings on X and B is
a sheaf of rings on Y. Then the functor fl : B—Mod — f_lB — Mod is exact, and the functor
fi: A=Mod — f,A - Mod is left exact.

Definition 2.4 (family of support) Suppose X is a topological space. A family of support ©
on X is a nonempty collection of closed sets in X such that:

1. if 4,B € ®, then AU B € ®;
2. if 4 € ® and B is a closed subset of A4, then B € ®.

Suppose X is a topological space, ® is a family of support on X and F is a sheaf of abelian
groups on X. For each s € I'(F) = F(X), we define the support of s, denoted by supp(s), to the set
of points x € X such that s, # 0, where s, is the corresponding element of s in the stalk 7. It is clear
that supp(s) is always a closed set in X. Consider the subset I, (F) of I'(F) given by

I[L(F) = {s e I(F) | supp(s) € }.

We can verify that I, (F) is a subgroup of the abelian group I'(F).

Theorem 2.5 Suppose X is a topological space, @ is a family of support on X. Then the map
F o Ip(F)

gives a left exact functor
Iy : Sh(X,Ab) — Ab.

3 Extension and lifting of sections

3.1 Flasque sheaves

Definition 3.1 (flasque sheaf) A sheaf F on a topological space X is called flasque if for each
open set U c X, the restriction morphism

F(X) - FU)
is surjective.

Proposition 3.1 Suppose X is a topological space and F is a sheaf on X. If for each x € X, there
is a neighborhood U of X such that F|, is flasque, then F is flasque.

Proof. Fix an open set U c X and a section s € F(U). Consider the poset
E={U,s)|UcU and s=s|,},
with the partial order given by
u,sy<U",s"y <= U cU" ands =J"|,.

Then E is a nonempty collection satisfying the condition of Zorn’s lemma, and then we can find a
maximal element (U,5) € E. We claim that U = X. Otherwise, there exists a neighborhood 7 of
x € X\ U such that F|, is flasque. Then we can find a section i € F(V) such that 5|z, = 57
The axiom of sheaf yields a section 5 € F(Ju V) such that §| i = 5, contradicting the maximality of
(U,5). Thus we have U = X, and then § € F(X), which shows that F is flasque. O



Remark For an element (U',s') € E, we usually call s' a extension of s to U'.
By the definition of direct image, we have the following result directly.

Proposition 3.2 Suppose X and Y are topological spaces, f: X — Y is a continuous map and F
is a sheaf on X. If F is flasque, then the direct image sheaf f,F is also flasque.

An important result of flasque sheaves is about the exact sequences.

Theorem 3.3 Suppose X is a topological space and
0>L>M->N -0
is an exact sequence of sheaves of abelian groups on X. If £ is flasque, then the induced sequence
0— LU) > MU) > NU) >0

is exact for each open set U c X.

Proof. Suppose the morphisms of sheaves are f: L - M and ¢ : M — N, with induced morphisms
f and . As long as I'(U, -) is left exact,it suffices to show that the morphism M(U) — N (U) is
surjective. Fix a section ¢ € A'(U). Consider the poset

E={(V,s) |V cU and g(s) = ¢|}.

The surjectivity of the sheaf morphism M — A implies that E is nonempty, and it can be verified
that F satisfies the condition of Zorn’s lemma. Thus there is a maximal element (V,5) € E. We
claim that 7/ = U. Otherwise, take x € U \ . Since M, — N is surjective, there exists a section §
on a neighborhood W of x such that g(5) = #|;;;. Then

g(flﬂ'mW - Elﬂ'mW) =0,

i.e. ~
g = Sl popr € ker g = im £

Suppose 5

Spaw = Sl pan = S ()
for some « € LWV nW). Since L is flasque, we can extend # to a section # € L(/W). Then 5 € M)
and 5+ f(#) € M(W) agree on V' n ¥, which induces a section e M(V~' U W) such that §'|,; =7
This contradicts the maximality of (V,5). Thus we have V' = U, and hence g(5) = ¢. O

Remark The section 5 is usually called a lifting of ¢ to M.

Corollary 3.4 Suppose X is a topological space and
0>Lo>M->N >0

is an exact sequence of sheaves of abelian groups on X. If £ and M are flasque, then N is also
flasque.

Proof. For each open set U c X, we have the following commutative diagram with exact rows:

0 > L(X) s M(X) — N(X) — 0

| l l

0 s L(U) s M(U) — N(U) —— 0




In particular, Since M(X) — M(U) and M(U) — N (U) are surjective, their composition M(X) —
N (U) is also surjective. The surjectivity of N (X) — N (U) then follows. O

Theorem 3.5 Suppose
0> M -> M - M* — ..

is an exact sequence of flasque sheaves of abelian groups on a topological space X. Then for each
family @ of support on X, the sequence

0 = [H(M°) = L(M') = TH(M?) — -
of abelian groups is exact.

Proof. Let
2P = ker(M? — MP*!) = im(MP™H — MP)

for each p > 0. Since we have the exact sequence
0— 2/ - M — M
and [}, is left exact, the sequence
0= [H(Z) - L(M?) — T(M™*)
is exact. Thus it suffices to show that
0= Tp(27) — L (M?) > [ (2#™) - 0
is exact for each p > 0. We consider the exact sequence
0— 2 > M - 2 0.

As T, is left exact, we only need to show that Iy, (M?) — Ty (22*') is surjective. Since M? is flasque,
the flasque property of 27 implies the flasque property of Z*'. As long as Z° = 0 is flasque, the
induction on p shows that each 27 is flasque. Thus I'(M?) — ['(2”*1) is surjective. Now take any
t € Tp(2P*"), with supp(z) = S € ®. We can lift 7 to a section s € I'(M?”), whose support is not
necessarily in ®. However, sy, ¢ maps to zero in 21 implying that s| x\s is a section of Z”. Since
27 is flasque, we can extend s|y, ¢ to a section s' € I'(2?). Then s— is a section of M? with support
contained in §, and hence
s—5 € Ty(MP).

It is clear that s — ¢ is a lifting of ¢ in I, (M?”). O

3.2 Paracompactified family and soft sheaves

A topological space X is called paracompact if every open cover of X has a locally finite open re-
finement. A closed subspace of a paracompact space is also paracompact. A paracompact Hausdorff
space is normal.

Lemma 3.6 Suppose X is a paracompact Hausdorff space. If {U},; is an open cover of X, then
there exists a locally finite open refinement {/}},.; such that V; c U, for each 7 € 1.

Lemma 3.7 Suppose X is a normal space. If {U},; is a locally finite open cover of X, then there
exists another locally finite open cover {/},, such that V; c U, for each 7 € 1.
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Corollary 3.8 Suppose X is a paracompact Hausdorff space. Then each open cover {U},; of X
has a locally finite open refinement {/},.; such that /', c U, for each 7 € /.

Definition 3.2 (paracompactified family) Suppose X is a topological space. A paracompactified
family ® on X is a nonempty family of closed subsets of X such that:

1. each § € @ is paracompact and Hausdorff;

2. if §;,~,S, € D, then S;u-~US, € D;

3. if Se® and S’ c S is a closed subset, then S’ € ®;
4. each S € ® has a neighborhood U such that U € ®.

If @ is a family of support on X and Y is a subspace of ¥, then define ®@|, to be the family of
subsets S € @ such that S c Y. If ¥ is a closed subset of X, then

Dy ={SnY|Sed}

If @ is paracompactified and ¥ = Un F with U open and F closed in X, then we can verify that @l
is a paracompactified family on Y.

Suppose F is a sheaf on a topological space X. Then we can actually define sections of F on
any subset ¥ of X to be continuous maps s: Y — E such that p s is the identity map on Y, where
(£, p) is the etale space of F. The restriction morphisms are defined in the natural way.

Theorem 3.9 Suppose F is a sheaf on a topological space X and {I},., is a locally finite closed
cover of X. If 5, € F(Y;) are sections such that

Jz'l)’,.m); = 5j|)?m;, 5,jel,

then there exists a section s € F(X) such that s| y, =5 foreach 7 € 1.

Proof. Suppose (E, p) is the etale space of F. It is direct that there exists a map s : X — E such
that p o s is identity on X and s|, = s; for each 7 € /. It remains to show that s is continuous. Fix
a point x € X. Since {I}},; is locally finite, there exists a neighborhood U of x such that U nY; is
nonempty for only finitely many 7,--,7, € /. By shrinking U if necessary, we may assume that x is
contained in each ¥, , and that there exists a section # of 7 on U such that

£(x) = s(x) = 5 (x) = = = 5 (x).

For each 1 < k < n, there exists a neighborhood U, of x such that r and 5, agree on U, nY,. Let

U' = U, n-U, Then  agrees with s on each U' nY,, and hence on U’. The continuity of s at x
follows. O

Theorem 3.10 Suppose F is a sheaf on a topological space X, S is a subset of X and s is a section
of F on S. If § has a fundamental system of neighborhoods consisting of paracompact Hausdorff
subsets in X, then s can be extended to a neighborhood of § in X.

Proof. Try to use Theorem 3.9 to glue the sections. O

Corollary 3.11 Suppose X is a topological space, F is a sheaf on X and S is a subset of X with a
fundamental system of neighborhoods consisting of paracompact Hausdorff subsets in X. Then we
have

F($) = lim F(),

where the inductive limit is taken over open neighborhoods U of § in X.
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It follows from the above corollary that if X is a paracompact Hausdorff space and F is a flasque
sheaf on X, then each section of F on a closed subset of X can be extended to the whole space X.

Definition 3.3 (soft sheaf) A sheaf F on a topological space X is called soft if for each closed
subset S of X, each section of F on § can be extended to X.

It is direct that the restriction of a soft sheaf to a closed subset is also soft.

Theorem 3.12 Suppose F is a sheaf on a paracompact Hausdorff space X. Suppose that for each
x € X, there exists a neighborhood U of x such that each section of F on a subset of U closed in X
can extended to U. Then F is soft.

Proof. Suppose s is a section of F on a closed subset S of X. Since X is paracompact Hausdorff, we
can take a locally finite open cover {U},; of X such that each U, satisfies the extention property
stated in the theorem. Then there exists another locally finite open cover {/},.; of X such that

E = ?z' c (]l
for each 7 € 1. For each J c I, define

5-UE
ief

Now consider the poset
E={(/J,t) | J 1, and ¢ is a section of F on F} such that t|Sﬁ5 = ;|Sm§},

with the partial order given by
L)<,y = JcJ, andt=t'|F].

The extension property on each U, implies that £ is nonempty, and Theorem 3.9 shows that E
satisfies the condition of Zorn’s lemma. Thus we can find a maximal element (/,7) € £. We claim
that J = 7. Otherwise there exists 7 € I\ J. Let /' = J U {s}. Noting that s|snr 1s a section of 7 on
SN E, which is a subset of U, closed in X, we can extend this to a section 5' of F on E by the choice
of U.. Theorem 3.9 then implies that there exists a section 7 on F 7 agreeing with 7 on F 7 and with
sonSnky. This contradicts the maximality of (/,7). Thus we have J = I, and hence 7 is a section
of F on X such that 7| = s. O

Corollary 3.13 Suppose X is a paracompact Hausdorff space and {Z},; is a locally finite family
of sheaves of abelian groups on X. If each ¥ is soft, then their direct sum is also soft.

Proof. The statement is trivial for finite 7. We then use the local finiteness and Theorem 3.12 to
deal with a general /. O

Definition 3.4 (®-soft sheaf) Suppose X is a topological space and @ is a paracompactified family
on X. A sheaf F on X is called ®-soft if for each S € @, F|, is soft, i.e., for each §',S € ® with
S’ c S, the restriction morphism F(S) — F(S’) is surjective.

Theorem 3.14 Suppose X is a paracompact Hausdorff space, @ is a paracompactified family on

X, and F is a sheaf of abelian groups on X. Then F is ®-soft if and only if for each § € @, the
morphism Iy (F) — F(S) is surjective.
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Proof. If the corresponding morphism is surjective for each S € ®, then it is direct that F is ®-soft.
Conversely, suppose F is ®-soft. For each § € @, we can find a neighborhood U of § such that
U € ®. There is a section on S U (U \ U) given by s on S and 0 on U \ U. By the ®-soft property,
we can extend this to a section § on U. Taking zero in X \ U, § then extends to the whole space X.
It can be seen that the extension belongs to Iy, (F). O

Theorem 3.15 Suppose X is topological space, @ is a paracompactified family on X, and
0>L>M->N -0
is an exact sequence of sheaves of abelian groups on X. If £ is ®-soft, then
0 = IH(L) = Ip(M) = Ip(N) — 0
is an exact sequence of abelian groups.

Proof. First suppose X is paracompact Hausdorff and @ consists of all closed subsets of X. Using
arguments similar to the proofs of Theorem 3.3 and Theorem 3.12, we see that each section of N on
X can be lifted to a section of M. For a general X and @, just consider the support of the section
needed to be lifted. O

Corollary 3.16 Suppose X is a paracompact Hausdorff space and
0>L>M—->N -0
is an exact sequence of sheaves of abelian groups on X. If £ is soft, then the sequence
0— L(A) > M) > N() >0
is exact for each closed subset 4 of X.
Analogous to the cases of flasque sheaves, we have the follwing theorems.
Theorem 3.17 Suppose X is a topoogical space, @ is a paracompactified family on X, and
0>L>M->N >0

is an exact sequence of sheaves of abelian groups on X. If £ and M are ®-soft, then N is also
O-soft.

Theorem 3.18 Suppose X is a topological space, ®@ is a paracompactified family on X, and
0o M"> M o> M2 > .
is an exact sequence of ®-soft sheaves of abelian groups on X. Then the sequence
0 = Ip(M°) = Lp(M') = T (M?) — -
is exact.

A useful result of soft sheaves is the following theorem.

Theorem 3.19 Suppose X is a topological space, @ is a paracompactified family on X, and A is
a sheaf of rings with identity on X. If A is ®-soft, then each .A-module M is also ®-soft.
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Proof. Suppose s is a section of M on a closed subset § € ® of X. There exists a neighborhood U
of § such that U € ®@. Since A is ®-soft, we can take a section # of A on U such that » takes the
value 1 on S and 0 on U \ U. Taking zero in X \ U, we can extend the section

x - u(x)s(x)

of M on U to the whole space X. O

4 Sheaf cohomology

A sheaf is always a sheaf of abelian groups without stated in this section.

4.1 Cohomology sheaf of a differential sheaf

Definition 4.1 (graded sheaf) Suppose X is a topological space. A graded sheaf on X is a
sequence F* = {F"}, ., of sheaves on X, where F” is called the component of degree » of F~.

Suppose T is a functor from Sh(X, Ab) to Ab (or generally any abelian category), denote by T'(F™)
the graded abelian group {T(F")},.z- It is worth noting that 7(F") is not necessarily identified
canonically with 7(§ F").

For two graded sheaf F* and G on X, a homomorphism of degree r from F* to G is a
sequence f = {f"},z of morphisms f* : 7* — G""". When r = 0, we simply call it a hoomorphism
from F* to G*. It can be verified that the graded sheaves on X, together with the homomorphisms,
form an abelian category.

Definition 4.2 (differential sheaf) A differential sheaf on X is a graded sheaf 7~ together with
a homomorphism d : F* — F* of degree r, satisfying d* = 0. We are mostly concerned with the case
r=1.

A homomorphism of differential sheaves is a homomorphism of graded sheaves commuting with
the differentials. We can also verify that the differential sheaves on X also form an abelian category.

Suppose F* is a differential sheaf on X. Define that
ZNF) =ker(F S 7Y, BYF) =im(F S FY), WAF) = 24(F)/BN(F).
The sheaf H”(F™) is called the derived sheaf (of degree n) of F~.

It is noticeable that the concept of differential sheaves and derived sheaves are analogous to
cochain complexes and homology groups. Suppose T is an additive functor from Sh(X,Ab) to
Ab. Then for each differential sheaf F*, the graded group 7'(F"), together with the differential
T(d) : T(F") — T(F"*"), is a cochain complex. If T is left exact, then consider the exact sequence

0_>Zn_>]_—-ni)]_-n+1’
which yields the exact sequence
0—T(2") - T(F") - T(F").

We then identity T(Z2") with Z"(T'(F”)) in a canonical way. If we further have T is exact, then using
the exact sequences
02" - F" - B"! -0

14



and
0->B"—>Z">H" -0,

we obtain a canonical isomorphism
H'(T(F")) =T(H"(F")), neZ.
For instance, for each x € X, we have the canonical isomorphism

H"(F) = (H"(F)),, neZ

X

An equivalent definition of the derived sheaves of a differential sheaf F is as follows. We can see
that the sheaves Z” and B” are generated by the presheaves

U~ Z"(F(U)), Uw B"(F(U)),
respectively. Then the derived sheaf H"(F") of degree » is generated by the presheaf
U~ H(F(U)).

4.2 Resolution

Now we construct a differential sheaf from a sheaf to define the cohomology of sheaves.

Definition 4.3 (resolution) Suppose X is a topological space and A is a sheaf on X. A (cohomo-
logical) resolution is an exact sequence of sheaves

0 AL b e,

The associated differential sheaf of resolution is F* = {F¥"},.,, with F* = 0 for » < 0. We also call
F* a resolution of A.

By definition, we see that the derived sheaf of a resolution of A is given by
HUF) = A; H'(F*) =0 for n>0.

If T is an additive functor from Sh(X,Ab) to Ab, then 7(F") is a cochain complex, with 7'(A)
embedded canonically into H°(T(F*)). If T is left exact, then T'(A) is actually isomorphic to
H(T(F")); and if T is further exact, then 7(F*) is a resolution of 7'(A).

Suppose A and B are two sheaves on X with resolutions F* and G, respectively. Suppose
f+ A — Bis a morphism of sheaves. Then a homomorphism g : F* — G of differential sheaves is
said to be compatible with f if the following diagram commutes:

Ay

1k

B——¢°

For a sheaf A on X, we can constuct a resolution C*(X;.4) of A in a canonical way called the
Godement resolution. First define C°(X;.A) to be the sheaf given by

U {s:U — E| p(s(x)) = x for all x e U},

15



where (E, p) is the etale space of A and the sections are not necessarily continuous. It is clear that
C°(X;.A) is a flasque sheaf of abelian groups on X, together with a canonical embedding

ji A= CUX;A).

Next we define
ZY(X;.A) = C(X; A) A,

and then
Cl(X;A) = C(X; 21(X; A)).

This yields another embedding
ZHX;A) — CHX;A).

For a general » > 0, suppose we have defined the sheaves Z"(X;.A) and C"(X;.A), with the former
embedded in the latter, then we can define

Z'N (X A) = CHXGA)[2M(XGA),  CHXGA) = (X 27(XGA)).

This gives us the embedding
z27(X; A) — (X A).

We can see that the sheaves C"(X;.A), n > 0 are all flasque.
The differential needs to be defined as well. It is quite direct to define

d:C"(X;A) — C"(X; A)
to be the composition
C(X;A) - C'(X;A)|Z2M(X; A) = 27X A) — CHX; A).

This verifies that d is a differential, and that the sequence
7 0 d 1 d
0> ASC (XA > C (XA > -

is exact. Hence C*(X;.A) is a resolution of A by flasque sheaves, in other words, a flasque resolution
of A.
Let
C'(X;A) =T(C'(X;A)), Co(X5A) = I (C(X;.A)),

where @ is a family of support on X.

Theorem 4.1 Suppose X is a topological space, and @ is a family of support on X. Then the
assignments
A C(XGA), A Ch(X;A)

give exact additive functors from the category of sheaves to the category of differential sheaves and
the cochain complexes, respectively. In particular, the functor given by

A C(X;A)

is exact.
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Proof. Consider the exact sequence of sheaves
0->A—->B—->C—0.

For each open set U c X, we have the exact sequence

0—>HAX—>HBX—>HCX—>O,

xeU xeU xeU

which implies the exactness
0— C'(X;A) - C°(X;B) - C°(X;C) — 0.
Noting that we have the commutative diagram with exact rows

0 > A > B >

L

0 — C°(X;A) — C(X;B) —— C(X;C0) —— 0

~
(e}

and that the morphism C — C°(X;C) is injective, the snake lemma yields the exact sequence

0 - ZY(X; A) - ZY(X; B) - Z1(X;C) — 0.
Doing this inductively, we obtain the exactness of the functor C*(X;—). Theorem 3.5 then suggests
that the functor Cp(X;-) is also exact. O
4.3 Cohomology groups of a sheaf

Definition 4.4 (cohomology of a sheaf) Suppose X is a topological space, @ is a family of support
on X and A is a sheaf on X. The cohomology group (of degree n) of A with respect to @ is
defined to be

Hg (X5 A) = H(Cy (X5 A)) = H (I (C (X5 A))).

In particular, when @ consists of all closed subsets of X, let

H"(X;A) = H'(C"(X;.A)) = H'(T'(C"(X; A))).

For a morphism f : A — B, a homomorphism of groups
S Hy (X5 A) — Hg(X; B)

is induced for each » > 0. We then see that Ay (X;—) is a functor for each z.

Proposition 4.2 Suppose X is a topological space and @ is a family of support on X. Then the
functors
I : Sh(X,Ab) — Ab, Hy(X,-) : Sh(X,Ab) — Ab

are naturally isomorphic.

Proof. For a sheaf A, consider the exact sequence
0 - A— C'(X;A) - CHX; A).
Since Iy, is left exact, we have another exact sequence
0= Tp(A) = Co(X5.A) = Co(X5.A),

which implies the desired natural isomorphism. O
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Theorem 4.3 Suppose X is a topological space, ® is a family of support on X, and

oAl BSeoo

is an exact sequence of sheaves on X. Then we have the long exact sequence
0 Tp(4) L T (B) S (0 > H (X A) L B (x:8) S HE (X 0) — -
o HVX0) D HEOGA) D B (X B) S HE(XG0) S B (G A) — .
Moreover, the connecting homorphism
3 Hy(X;C) — Hy' (X; A)
is natural, in the sense that if we have the commutative diagram with exact rows

A—— B
L

0 >
0 s A B’

\
7

> 0

~
A<—AQ

~
o

then the following diagram commutes

HI(X;C) —2— HI'Y(X; A)

l l

H(X,C) —2 B (X A

Proof. Just consider the exact sequence of cochain complexes

0— Cp(X;A) = Co(X;5B) — Cp(X;C) — 0.

Corollary 4.4 Suppose X is a topological space, ® is a family of support on X, and
0> A->B->C—0
is an exact sequence of sheaves on X. If qu) (X;.A) = 0, then the correspondence sequence
0 - [H(X;A) - [L,(X;B) » [L(X;C) — 0
is exact.

Theorem 4.5 Suppose X is a topological space, ® is a family of support on X, and A is a sheaf
on X. Then
Hy(X;A) =0, n=1

if one of the followings verifies:
1. A is flasque;

2. @ is paracompactified and A is ®-soft.

18



Proof. Consider the exact sequence
0—-A—C(X;A) > CH(X;A) — -

Using theorem 3.5 if the first condition verifies and theorem 3.18 if the second, we see that the
sequence
0 — Tp(A) = Co(X5.A) = Co(X;A) — -

is exact, implying that the higher cohomology groups are all trivial. O

As the Godement resolution is not always easy to compute, we try to determine the cohomology
groups using other resolutions.

Suppose X is a topological space, ® is a family of support on X and F* is a differential sheaf on
X. Consider the bigraded group

K =K(F") = {Chx; 71}
We can make this into a double complex by taking differentials
d': Ch(X; F1) — Cb™ (X F1)
given by the Godement resolution and
d": Ch(X; F1) — Ch(X; 71+
induced from the differential of F*, up to (—1)?, which satisfies
dd"+d"d =o.

Then d = d’' + d" defines a differential on the total complex K., which is given by

ot

K= > Ch(X;F).
ptq=n

Now consider the spectral sequences given by K:

Ippq _ P b _ P (171

Ez - I—ldr(H;]u (K))’ Ez - [_]drr([_[df(K))
Since Cg is exact, we see that

(H(K))? = H1(KP") = HI(CL(X; F*)) = Co (X; HI(FT)),

and hence
B = HY (Co (X HI(F))) = Hy (X HI(F)).
At the same time,
(H(K)) = HI(K™?) = HI(Cy(X; F)) = Hy(X: FY),

implying that

P> x

EY? = HP (HL(X; F7)).
Since K7 = 0 for p <0, the second filtration of K, given by
"kr= %KY,
i€Z,j2p
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is regular, meaning that for each » € Z, there exists p, such that
Kiwn"K? =0, pzp,

Noting that 0
MEPS = HE (HY (X; F*)) = HY (T (X; F7))

in a canonical way, we have the induced homomorphism
H? (Iy(F")) — HP (K).

When UEf’q = 0 for 4 > 0, then the above homomorphism is actually isomorphism. Consider the
convergence of the spectral sequence given by the first filtration, we obtain the following theorem.

Theorem 4.6 Suppose X is a topological space, ®@ is a family of support on X, and F~ is a
differential sheaf on X. Suppose the complexes Hg(X ; F7) are exact for g > 0, then we have the
convergence of the spectral sequence

EPT = HE (X, HI(FT)) = HPM(Ty(F)).
Now consider a resolution of a sheaf A on X:
0>A->F 5 F .,

The corresponding double complex K(F") then concentrates in the first quadrant. We have the
injective homomorphisms of chain complexes

CE)(X’-A) - K‘:ot A rtl)(]:*)3
which induces homomorphisms of cohomology groups
Hy(X; A) — H"(Koy) < H' (I(F7)).
These can be identified with the homomorphisms given by the spectral sequences
B0 1 () Y,

since we can identified .A with H°(F*) and Iy(F*) with H(g(X; F*). Since F* is a resolution of A,
we have H?(F") = 0 for g > 0, and hence

EP = HE (X, HI(F) =0, g>0.
Hence the homomorphism Hy(X;A) — H"(K},,) is actually bijective. We then obtain a homomor-
phism
H"(Iy(F")) — Hg(X;.A).

Acturally, this result can be viewed as a special case for the following convergence of the spectral
sequence given by the second filtration

Pt = HP(HL(XG F7)) = HY (X A).

Together with the convergence of the spectral sequence given by the first filtration (theorem
4.6), we obtain the following isomorphism.

20



Theorem 4.7 Suppose X is a topological space, @ is a family of support on X, and F~ is a
resolution of a sheaf A on X. If qu (X; F) is exact for ¢ > 0, then the canonical homomorphism

H"(Iy(F")) — Hg(X;.A)
is bijective.

Corollary 4.8 Suppose X is a topological space, @ is a family of support on X, and F" is a
resolution of a sheaf A on X. Then we have the canonical isomorphism

Hg(X;A) = H (I (F7)),
if one of the followings verifies:

1. F7 is flasque for each g;

2. @ is paracompactified and F? is ®-soft for each g.

Example 4.1 Suppose M is an n-dimensional smooth manifold. They we have the resolution of
R on M given by
0-R—-Q"—- Q' — ..

Suppose @ is a paracompactified family on M. Since C;; is a ®-soft sheaf of rings, theorem 3.19
implies that Q7 is @-soft for each p. Thus we have the isomorphism

Hy(M;R) = H'(I5(Q)) = Hgg o (M).

The homomorphism from H”(Iy(F")) to Hy(X;.A) is actually canonical. This is what the fol-
lowing theorem means.

Theorem 4.9 Suppose X is a topological space, ®@ is a family of support on X, and 7" and G"
are resolutions of the sheaves A and B on X, respectively. If f: A — B is a morphism of sheaf and
¢:F" — G is compatible with £, then the following diagram commutes:

H'(Iy(F7)) — Hy(X;.A)

¢| I

H"(Ip(G7)) — Hg(X;B)
The homomorphism also commutes with the connecting homomorphism of a long exact sequence.

Theorem 4.10 Suppose X is a topological space, @ is a paracompactified family on X, and
F*,G",K" are resolutions of the sheaves A, B,C on X respectively. If we have the commutative
diagram of exact sequences

\
7

~

A 4—a

~
o

N

B
l
g*

0

~
o

~N
~
~

and the corresponding sequence

0 = Ip(F7) = Ip(97) - L (K?) — 0
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is exact for each ¢, then the following diagram commutes:

H" (I (K")) — Hy(X;0)

5l I

H" ([(F)) —— Hy'' (X3 A)

4.4 Characterisation of cohomology groups

An interesting thing about the cohomology groups is that they can be determined (up to a natural
isomorphism) by some of their properties.

Theorem 4.11 Suppose X is a topological space, @ is a family of support on X, and
F" :Sh(X,Ab) - Ab, »=0,1,--
are functors satisfying the following properties:

1. there is a natural isomorphism
a: Ty — F%

2. for each exact sequence
0-Aalitcso

of sheaves on X, we have a natural connecting homomorphism
0 F*(C) — F"™1(A)
yielding the following long exact sequence:

0— A L P B) S o) F G A) — -

s G0 FOGA) D P OGB) S POGC) D G A) - e

3. we have

whenever A is flasque.

Then there exist natural isomorphisms

T": Hi(X;-) — F"
compatible with connecting homomorphisms.
Proof. First we have a natural isomorphism

7°: Hy(X;-) — F”

given by « and the natural isomorphism from [}, to Hg(X ;—). Next we try to construct the natural
isomorphisms inductively. Consider the exact sequence of sheaves

0—A—CX;A) - 2HX;.A) — 0.
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Then we have the commutative diagram of exact sequences:

0 — [p(A) —— G A) —— L(Z' (X A)) —— Hy(X5A) —— Hy(X5C°(X;A))

l l l

0 —— F'(A) — F(C"(X;4)) — P21 (X;4)) —— FY(A) ——— FI(C(X;A))
The vertical arrows are given by «, and since X°(X;.A) is flasque, it is true that
Hy(X;C°(X;.A)) = FH(C*(X5.A)) = 0.
Therefore there is an isomorphism
T'(A) : Hy(X; A) — F'(A)

making the diagram commute. For a morphism f: A — B, consider the commutative diagram

00— A — (X A) — Z/(X;A) —— 0

| l

0 —— B —— C(X;B) —— Z2Y(X;B) —— 0

which actually implies the naturality of 7%. It is clear that 7' commutes with the connecting
homomorphisms. Suppose we have constructed the natural isomorphism

T" s Hy(X;-) — F",

with » > 1, commuting with connecting homomorphisms. We have the commutative diagram of
exact sequences:

HY(X;C(XGA) —— HR(Z'(XGA) —— HPP(XGA) —— HY(X;C0(XGA))

-

FI(C(X;A) —— F'(Z' (X5 A)) —— F"H(A) ——— F"H(C(X;A))
The flasque property of C°(X;.A) implies that
Hy(X;C° (X5 A)) = F*(C° (X5 A)) = Hy' (X C°(X;. A)) = F*H(C(X5.A)) = 0.
We then obtain an isomorphism
THA) - B (X A) — F7(A),

The naturality and the commutativity with the connecting homomorphisms of 7% are both direct
from our construction. O

5 Cech cohomology

Through this section, we consider presheaves and sheaves of abelian groups on a fixed topological
space X. If A is a presheaf, we always suppose that A(@) = 0.
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5.1 Cohomology with respect to an open cover

Suppose A is a presheaf on X and U = {U},; is an open cover of X. For a subset s = {7, --~,z'P} of I,
define
U:U4:L][0{j...ﬂ(]l,.

5 Zot, y
Let
A= [ AW
;={z'0,-~-,z:p}C1
[0£20)]

be the group of A-valued cochains of degree p of U. A cochain « € C?(2[;.A) has the form

a= (“lb---l}’)io,m,l;yél’

with
a

1'0---1‘}, € A(U;Uzp)

Define the differential
d:CPQUA) — CP* (U5 A)

by
P+l

— _1)* .
(dd)zb..-z'p“ - Z( 1) azb'"fk'"l}m |U"o-~-fp+1'

k=0

This is similar to the differential of a singular cochain. We denote the cohomology group of C*(I;.4)
of degree n by H"(U;.A).

For a morphism f : A — B of presheaves, we have a induced cochain homomorphism C*(1;.4) —
C*(U; B) and then a homomorphism

[T H (W A) — H(U; B)

for each » > 0.
Consider an open cover U = {U},; of X and an open subset 7 ¢ X.Then the family of open sets
given by UnV = {U;nV},, is an open cover of /. We take the notation that

C'Unr;A) =CUnV;Al).
For each open sets 1?77 c IV c X, the restriction of sections induces a morphism
C'UnV;A) - C*(UnIV;A).

It follows that the assignment
Ve C'UnT;A)

gives a presheaf on A, denoted by C”(1;.4). We then also obtain a differential presheaf

C' (U A) ={C" (WA,

If A is a sheaf, then each C*(U;.A) is a sheaf and C*(U;.A) is a differential sheaf. We can see that
(U A) =T(C"(U;.A4)),

which inspires us to define
Co(WGA) = I(C7 (2 A)),
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where @ is a family of support on X. The cohomology groups of Cg(1;.4) are denoted by Hy (2l;.A),
with z > 0.
Note that we have a sheaf morphism

jir AW A)
given by
Jj@);=alyy, acAl)iel
The axiom of sheaf implies that ; is injective with im(;) = ker(d).
Theorem 5.1 Suppose X is a topological space and Ul is an open cover of X. Then for each sheaf
A on X the following sequence is exact
0= AD COA) S €1 2A4) S CLA) - -,
i.e., C"(U;.A) is a resolution of \A.
Proof. We have shown the exactness at A and C°(1l;.A), so it remains to show im(d) = ker(d) for

n> 0. Consider x € X and a germ in ker(d) defined by « € C*(UnV;.A), where V' is a neighborhood
of x. Since U is an open cover, we may assume V c U, for some index j € /. Then

VonU., =VnU

Tt i1 T,y
for any #y,--,7, ; € I. Define g€ C*"'(UnV;.A) by

Bivei, = Ui, > os7styoy €1

Since da = 0, we have
n

—_ — -— —_— k ~
0= (da)jz'n-nz'n = i, Z( 1) B oty

k=0

implying that

n

N () _ k _
(dzg)z‘o...;‘n = ;(_1) ‘glb""fk"'l}, = £ (_1) dj'l'o"'[/e'"l' = “z‘(,...,'-

'n n
=0

It follows that « = 48 and the exactness at C"(U;.A) follows. O

Corollary 5.2 Suppose U is an open cover of a topological space X and @ is a family of support
on X. Then for each sheaf A on X, we have the canonical isomorphism

Ho(W; A) = Ty (A) = Hy(X;.A).
Proof. Consider the exact sequence
0—->A— C'QA) — CH (A A).
Since I, is left exact, we have the exact sequence
0 — Ip(A) - CoUGA) — Cu (U A).

It follows that Hg(lI;A) is isomorphic to I, (.A) canonically. O
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Theorem 5.3 Suppose U is an open cover of a topological space X, ® is a family of support on
X, and A is a sheaf on X. If A is flasque, then

H(GA) =0, n>1.

Proof. By theorem 5.1 and 3.5, it remains to verify the flasque property for each C”*(l;.4), which is
direct from the definition. O

Applying the results in section 4.3, we obtain a canonical homomorphism
Hy(W; A) — Hg (X;.A)

for each open cover U of X, each family of support @ and each sheaf A on X.

5.2 Relations between the cohomology with respect to an open cover
and that of the whole space

Suppose U is an open cover of a topological space X and F* = {F"} is a differential sheaf on X. As
shown in section 4.3, we can consider the double complex

K =KQWF") = {C’ W F)},
with the differentials
d:CPQUFT) — CP W F1),  d": CPQU,FT) — CP QG F7HY,
To determine the corresponding spectral sequences, note that
(HL(K)) = HI(K™?) = HI(C' (G F)) = HIQ F7),

and then
P9 _ LT
E, = H' (H1(W; F)).

For 'E,, we have

(HL,(K))? = HT(KP") = H1(CP (U, F))
=H’ F(U)
::{l'o,n-,ip}CI

HI(F (1))

1={z’0,~~~,z'p}C[
HUF)NY)
x:{z'o,---,ip}cl

= CPQHI(FT)),

implying that
EPT = HP(CT QUG HI(FT))) = HE QU HY(FT)).

Now suppose F* = C*(X;.A) is the Godement resolution of a sheaf A. The canonical injection
A — F° then induces a canonical homomorphism of complexes

C'WA) - C (U F) — Koy
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which further induces a homomorphism
H'(WA) — H" (Kiy)

of cohomology groups. As F" is a flasque resolution of A, we have H?(1;.A) = 0 for ¢ > 0 by theorem
5.3, and hence
TEPT = HP QWG HI(FT)) =0, ¢ > 0.

It follows that the homomorphisms
H"(X;A) = H'(L(F")) = H'(H (W F*)) — H"(K;oy)
are all bijective. We then obtain natural homomorphisms
H'(WA) - H (X;A).
Turning to the other spectral sequence, we find the following theorem.
Theorem 5.4 Suppose U is an open cover of a topological space X and A is a sheaf on X. Then
the following convergence of the spectral sequence holds:
BT = HY (W HT(A)) = HPY(X; A),
where the sheaf H?(A) is given by
U HI(C'(X; A)(U))
for each ¢4 = 0, with C*(X;.A) the Godement resolution of A.
Corollary 5.5 Suppose U = {U},; is an open cover of a topological space X and A is a sheaf on

X If
HI(C(X;A)(U)) =0, scl,g>0,

then the canonical homomorphisms
H" (W A) - H'(X;.A)

are bijective.

The above results can actually be generalized to Hy, which yields canonical homomorphisms
Hy (U A) — Hyp(X;.A).

It can be seen from our constructions that these homomorphisms are the same as those at the
end of section 5.1.

5.3 Cech cohomology

Suppose U = {U},,; and B = {/}},; are open covers of a topoological space X such that ¥ is a
refinement of U, i.e., for each j € /, there is 7 € 7, such that V; c U;. Then we have a map ¢: ] — [
such that V. < U for each ;j. Consider a family of support ® and a sheaf .4 on X. We can define
a homomorphism of complexes
£ Gy A) — Cp(B5 A)
by
(’*(“))jo...jn = (j)1(j,) ly s Jorsjs €2 € CgUA).

Jo~jn
This further induces a homomorphisms between cohomology groups. However, since the choice of
¢ is not unique, the naturality of the homomorphisms need considering.
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Theorem 5.6 Suppose U = {U},,; and B = {Vj}jE] are open covers of a topoological space X such
that B is a refinement of U, ® is a family of support on X, and A is a sheaf on X. If 4, and +, are two
maps from J to / such that V.cU and V.c U, for each j € /, then the induced homomorphisms

4,5 1 Co(W; A) — Cy(Bs.A)
are homotopic.

Proof. Define homomorphisms
K:Cp A) — CY(Bs A)

for each » > 0 by
n-1
_ _1\k
(K“)Ji)"'fn—l - ;( 1) “11(]‘0)""1(/kv)IZ(/k')"'lz(jnfl) |V]‘0'”jn—1 ’

We can verify that
45— =dK + Kd,

i.e., ;j and ¢ are homotopic through K. O

Since homotopic cochain complex homomorphisms induce the same homomorphism of cohomol-
ogy groups, we obtain a canonical homomorphism

Hy (W A) — Hy (5 A)
for each » > 0. Moreover, if 0 is a refinement of ¥, then the following diagram commutes:
Hy (s A) » Hy (W5 A)
)

HL(B; A

We also have the commutative diagram

HA (WG A) s H(B; A)

o~

HE(X; A)

Consider the collection €(X) of open covers of X of the form U = {{].},., such that x € U, for
each x. Equip €(X) with the partial order given by

U< U, cV, for all x € X.
For I < ifi, the identity map on X induces a canonical homomorphism
Co (B A) — Co (UL A)
for each family of support ® on X. Define the Cech cochain complex on X by
Co(X;A) = h_I)nC(};(II;A),

where the inductive limit is taken over U € €(X). The Cech homology groups of A is then
defined to be ) )
Hy(X; A) = H (Cy(X;A)), n=0.
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We can see that
Hy (X5 A) = H" (lim Cy (W5 A)) = li_r)nH”(CE)(fI; A)) = n_n}Hg(ﬁ; A).

Suppose U is an arbitrary open cover of X. There exists e C(X) such that Il is a refinement
of . Then we have a canonical homomorphism given by the refinement relation

HEQGA) — HE(UA),
and a canonical homomorphism given by the inductive limit

HE (G A) — HE(X; A).
Their composition gives a homomorphism

HE (W A) — HE(X;A).

We claim that this homomorphism is independent of the choice of 1. Indeed, suppose B e C(X) is
another refinement of M. Then we have another open cover W e C(X) of X such that W < U and
W < B. It follows that we have the commutative diagram

Hg(U;.A)

L

H(GA) —— BB A) «——— HE(E;A)

o~ 1 7

AL (X; A)

This shows that the above homomorphism is canonical.
It can be shown that for each open covers U and B of X such that B is a refinement of U, we
have the commutative diagram

Hy(U;.A) > Hy (B; A)

~

Hy(X;.A)
Furthermore, by the explicit construction of the inductive limit of abelian groups, we can see that
Hg(X; A) = lim Hg (15 A),

where the inductive limit is taken over all the open covers U over X. More generally, if € is a family
of open covers on X such that each open cover U of X attains a refinement in €, then Hg(X;.A) is
the inductive limit taken over €.

Theorem 5.7 Suppose X is a topological space, @ is a family of support on X such that each
S € @ attains a neighborhood in ®. Then the functor A — Cj(X;.A) takes an exact sequence of

presheaves to an exact sequence of complexes.

Proof. Consider an exact sequence of presheaves

0> A—>B—->C—0,
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which implies an exact sequence
0— AU) - B(U) - C(U) >0
for each open U c X. It follows that
0—-C' WA - C(U;B) > C(U;C) -0

is exact for each open cover U, which yields from the left exactness of I, that

0 — Cp(isA) — Co(Us B) — Gy (5 C)
is exact. Passing to the inductive limit, we see the exactness of

0 — Cp(X5.4) — Co(X;B) — Cp(X;0).

It remains to show the surjectivity of Cj(X; B) — Cg(X;C).
Consider an element in C?; (X;C) represented by an cochain « € C{I’; (U; C) with S € @ being its

support. Take a neighborhood 7" € ®@ of S. By replacing U with a refinement if necessary, we may
assume that U, c 7" for each x € § and &, = 0 if s = {x, -, x,} is not contained in §. Then each «, can

be lifted to 4, € B(U,), which generates a cochain f € Cg(fl; B). This completes the proof. O

This implies that an exact sequence of presheaves yields an exact sequence of Cech cohomology
groups.

Recalling that we have a canonical homomorphism
H' (W A) > H'(X;.A)

for each open cover U of X, the universal property of the inductive limit yields a canonical homo-
morphism )
H"(X; A) —> H"(X; A).

The rest of this section devotes to showing the bijectivity of this homomorphism.
Suppose F* = C*(X;.A) is the Godement resolution of .A. Consider the double complex

K ={Cr(x; 7).
We have the canonical homomorphisms of complexes
C'(X; A) — K, — I(F).
By theorem 5.3, we have A7(X; F?) for each g > 0 and p, implying that
TEPT = HP(H1(X;F7)) =0, ¢>0.

Thus the canonical homomorphism

H"(X; A) = H'(H°(X; F*)) - H"(K},)
is bijective. Define the presheaf

HI(X;A) : U HI(F(U)) = HI(U; A)
for each 4. Then as C?(X;-) is an exact functor from pSh(X,Ab), we have

HI(K?") = H1(C?(X; F*)) = CP (X3 HY(X5.A)),

and hence

EPT = 3P (X, H(X; A)).
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Theorem 5.8 Suppose X is a topological space and A is a sheaf on X. Consider the presheaves

HI(X;A) : U HI(F(U)).
Then the following convergence of the spectral sequence holds:

B = AP (X HI(X;A)) = HPY(X; A).
The spectral sequence actually gives the canonical homomorphism
H"(X; A) - H"(X;.A)

by the canonical isomorphism #°(X;.4) = A. It is worth noting that the sheaf generated by H?(X;.A)
is zero for ¢ > 0, as each cocycle of F* is a coboundary locally.

Lemma 5.9 If F is a presheaf on X generating a zero sheaf, then A°(X;F) = 0.

Proof. Consider a cochain « € C°(X;F) given by an open cover U = {U},ex of X and a family
{a.} with «, € F(U,). Since the sheaf generated by F is zero, there is a neighborhood V7, c U, of
x such that “x'Vx = 0. Passing to B = {V.}.ex, We obtain C°(X;F) = 0, which clearly implies that
H(X;F) = 0. O

We then see that A°(X; H'(X;.A)) = H°(X; H*(X;.A)) = 0, which implies the following corollary.

Corollary 5.10 Suppose X is a topological space and A is a sheaf on X. Then the canonical
homomorphism
H"(X; A) —» H"(X;.A)

is bijective for » = 0,1 and injective for » = 2.

The above results actually hold for each family of support @ satisfying the condition of theorem
5.7.

Theorem 5.11 Suppose X is a topological space, @ is a paracompactified family on X, and F is
a presheaf on X. If the sheaf generated by F is zero, then

H(X;F) =0, n=0.

Proof. We will show that each cohomological class in [:Iq'; (X;.A) can be represented by a locally finite
open cover U and a cocycle on U. Next we will show that each cochain on this cover induces zero
on a refinement.

Consider a cohomological class in I:[q’;(X; A) represented by an open cover U = {U},; and a
cocycle 2 € C*(U; A) supported on S € ®. Take a neighborhood §' € ® of S, for which we can assume
that each U, intersecting S is contained in S'. Let

L={iel|UnS =+ @}

Since « supports on S, each x € X \ § attains a neighborhood V'(x) such that «, induces zero on
U nV(x) for each s c I. Replacing U by its refinement if necessary, we may assume that each U,
with 7 ¢ [, is contained in some V' (x), which implies that «, = 0 if s is not contained in ;. We then
see that the cohomological class can be represented by an open cover U = {U},(g;, With Uy = X\ S
and U, c S if 7 € [,. Since S’ is paracompact, there is a locally finite refinement of 2 nS". Passing
to this refinement, it is valid to assume the local finiteness of .
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Now consider a locally finite recover U = {U},, together with a refinement ¥ = {/}},, with
V,; c U for each 7 € I and « € Cj(U;.A). For each x € X we can take a neighborhood I, such that
x € U; implies W, c U,, x € V; implies W, c I}, and that 7/, intersects V; implies x € U,. Moreover,
since the sheaf generated by A is zero, each x € U has a neighborhood on which «, induces zero.
Thus we can meanwhile asssume that x € U, implies «,|,;, = 0. Take any map ¢ : X — [ such that
W, c ¥, for each x € X. Consider any (x,~,x,) ¢ X such that W, .. # @ Assume j, = i(x,) for
each £. As

xn

pVXUn...nVV;Cn # @,
W, intersects each W, c V

X [/

W, clU, . ,,and a, ;| =0. Clearly we obtain
0 0 0 tn Wy

and then our assumption suggests that x; € U, . It follows that
(U]

A

ie., ["(a) = 0. O

Theorem 5.12 Suppose X is a topological space, @ is a paracompactified family on X and A is
a sheaf on X. Then the canonical homomorphisms

H(X; A) > Hp (X3 A)
are bijective.

Proof. We have 5
H(XGHI(X;A) =0, ¢>0

from theorem 5.11. Then the generalized version of theorem 5.8 implies the desired isomorphisms.
O
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